研究生: |
陳崇軒 Chen, Chung-Hsuan |
---|---|
論文名稱: |
以LabVIEW程式比對非破壞性光譜圖 - 以東方繪畫常用無機顏料為例 Pattern recognition of non-destructive spectra based on LabVIEW -Take Inorganic pigments are common in oriental painting as a case |
指導教授: |
林震煌
Lin, Cheng-Huang 張元鳳 Chang, Yuan-Feng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 顏料 、模糊理論 、LabVIEW 、非破壞性 、拉曼光譜儀 、傅立葉轉換紅外光譜儀 、X射線螢光光譜儀 、X射線繞射光譜儀 |
英文關鍵詞: | pigments, fuzzy theory, LabVIEW, nondestructive, Raman, FTIR, XRF, XRD |
DOI URL: | http://doi.org/10.6345/NTNU201900143 |
論文種類: | 學術論文 |
相關次數: | 點閱:217 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究基於文物保存與維護的安全,均 使用非破壞性光譜儀 拉曼光譜儀 (Raman) 、傅立葉轉換紅外光譜儀 (FTIR)、X射線螢光光譜儀 (XRF) 、X射線繞射儀 (XRD)。使用的無機顏料為台灣、日本所製造,大小為10號,此號數為 中間大小可獲得較佳代表性光譜。
本篇使用之重疊度運算程式,是基於模糊理論所開發, 計算光譜間的交集與聯集比例, 了解兩者之重疊程度 。並成功運用在非破壞性光譜之間 。
首先,計算印泥的螢光與拉曼特徵的重疊度推測畫作為相同作者的可信度 。去除螢光背景後 藉由資料庫計算重疊度,成功推測印泥成色物質為硃砂 (HgS),並非鉛丹 (Pb3O4)或其他有機顏料 。另外,成功推測白色部分主成分為碳酸鈣 (CaCO3),並非鉛白 (2PbCO3Pb(OH)2)、鈦白 (TiO2)或其他有機顏料 。
接著在資料庫 比對 過程中發現 黃色無機顏料 -岩肌的主成分改變,現在的岩肌並非以前所使用主成份為二氧化矽 (SiO2) 的紅玉髓,而是主成份為碳酸鈣 我們向製造商反應此結果,並 得知原礦已改變為主成份為碳酸鈣的紅色大理石。
最後,藉由拉曼及XRD辨別碳酸鈣顏料來源成功辨別珊瑚末與胡粉 其來源為動物性碳酸鈣,方解末為礦石性碳酸鈣。
For conservation of cultural relics, this study use the non-destructive spectrometers, including Raman, FTIR, XRF, XRD. Inorganic pigments having a size of No. 10 are made in Taiwan and Japan.
The overlap calculation program is based on fuzzy theory. Calculates the intersection and correlation ratio between non-destructive spectra to learned the degree of overlap.
First, calculate the degree of overlap in the fluorescence and raman peaks of the ink to estimate same author or not. Remove fluorescence and calculate overlap with the database. The substance of red is Cinnabar (HgS) instead of Minium (Pb3O4) or other organic pigments, white is Calcium carbonate (CaCO3)instead of White lead (2PbCO3•Pb(OH)2), Titania (TiO2) or other organic pigments.
The main component of the yellow inorganic pigment is different. At present, Iwahada is not made of carnelian whose main component is silicon dioxide (SiO2), but unknown whose main component is calcium carbonate. We responded to this result to the manufacturer and informed the ore has changed to a red marble (CaCO3).
Finally, the source of calcium carbonate pigment was successfully identified by Raman and XRD. Sangomatsu and Gofun is derived from animal of calcium carbonate and Hokaimatsu is ore of calcium carbonate.
1. 高永隆, <礦物顏料與現代重彩.pdf>. In 2009-兩岸重彩畫學術研討會, 國立台灣藝術大學: 新北市板橋區, 2009.
2. A, H. S., Molecular Diffraction of Light. Nature 1922, 110 (2763), 505-506.
3. Smekal, A., Zur Quantentheorie der Dispersion. Naturwissenschaften 1923, 11 (43), 873-875.
4. Jestel, N. L., Raman Spectroscopy. In Process Analytical Technology, 2 ed.; Bakeev, K. A., Ed. John Wiley & Sons: 2010; pp 195-243.
5. Cappa, F.; Fruehmann, B.; Schreiner, M., Raman Spectroscopy for the Material Analysis of Medieval Manuscripts. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage, 2019; pp 127-147.
6. Ellis, D. I.; Muhamadali, H.; Xu, Y.; Eccles, R.; Goodall, I.; Goodacre, R., Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. Analyst 2018, 144 (1), 324-330.
7. Yu, B.-S.; Fang, J.-N.; Huang, E.-P., Characteristics of the Raman spectra of archaeological Malachites. Journal of Raman Spectroscopy 2013, 44 (4), 630-636.
8. Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P., Raman spectroscopy for the investigation of carbon-based black pigments. Journal of Raman Spectroscopy 2015, 46 (10), 1003-1015.
9. Muro, C. K.; de Souza Fernandes, L.; Lednev, I. K., Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes. Analytical Chemistry 2016, 88 (24), 12489-12493.
10. Robinet, L.; Coupry, C.; Eremin, K.; Hall, C., The use of Raman spectrometry to predict the stability of historic glasses. Journal of Raman Spectroscopy 2006, 37 (7), 789-797.
11. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbon nanotubes. Physics Reports 2005, 409 (2), 47-99.
12. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports 2009, 473 (5), 51-87.
13. Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 2014, 181 (1), 23-43.
14. Hirschfeld, T.; Schildkraut, E. R.; Tannenbaum, H.; Tanenbaum, D., Remote spectroscopic analysis of ppm‐level air pollutants by Raman spectroscopy. Applied Physics Letters 1973, 22 (1), 38-40.
15. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Letters 2007, 7 (2), 238-242.
16. Movasaghi, Z.; Rehman, S.; Rehman, I. U., Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews 2007, 42 (5), 493-541.
17. Manoharan, R.; Wang, Y.; Feld, M. S., Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 1996, 52 (2), 215-249.
18. Stuart, B. H., Infrared Spectroscopy: Fundamentals and Applications. 2004.
19. Crouch, D. A. S. F. J. H. S. R., Principles of Instrumental Analysis, International Edition 6th Edition. 6 ed.; Cenage Learning: 2007.
20. Mackenzie, F.; Urmos, J.; Sharma, S., Characterizations of Some Biogenic Carbonates with Raman Spectroscopy. 1991, v. 76, pp. 641-646.