簡易檢索 / 詳目顯示

研究生: 莊英奇
Ying-Chi Chuang
論文名稱: 鈀/鐵與鐵/鈀雙層膜於矽基板(111)上 熱穩定性與合金形成之研究
Thermal Stability and Alloy Formation in Pd/Fe and Fe/Pd bilayers on Si (111)
指導教授: 林文欽
Lin, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 矽基板(111)鐵與鈀雙層膜歐傑電子能譜熱穩定性鐵與鈀合金
英文關鍵詞: Si (111) surface, Fe and Pd bilayers, Auger electron spectroscopy, thermal stability, Fe and Pd alloy
論文種類: 學術論文
相關次數: 點閱:362下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為探討在壓力1.6×〖10〗^(-9) torr的室溫下,於清理過的矽基板上鍍上不同厚度與相對位置之鈀與鐵雙層膜的熱穩定性與合金形成。為了觀察從分離的雙層膜到合金的轉變過程,我們已經研究了退火時間與溫度的效應,藉由歐傑電子能譜(AES)的測量,在歐傑電子能譜圖中觀察到相分離。溫度在大約690至804 K之間,Pd/Si與Fe/Si歐傑訊號比值呈現了兩種不同的下降過程,前者比後者下降的更為急遽。下降的Pd/Si與Fe/Si訊號比值表示在不同相對位置的兩雙層膜系統中,Pd與Fe原子會擴散到矽基板裡。Fe/Pd與Pd/Fe曲線在兩種系統中也被發現有相似的趨勢,在相對高溫情況下,Fe/Pd與Pd/Fe曲線相交後,Fe/Pd訊號比值將會大於Pd/Fe訊號比值。我們的研究提供了在矽基板(111)上的鈀與鐵雙層膜之熱穩定性與合金形成之詳細報告,這些報告在未來的應用上是有價值的。

    The bilayers of Pd and Fe with different thicknesses and relative positions were grown on the flashed Si (111) surface at room temperature in an ultrahigh vacuum with a base pressure of 1.6 × 10¯⁹ torr. In order to observe the transformation processes from the separated bilayers into alloys, the annealing-time and annealing-temperature effects were investigated. By Auger electron spectroscopy (AES), the phase separations were found in Auger diagrams. At the temperature of about 690-804 K, two kinds of decreasing processes were observed in the Auger signal ratios of Pd/Si and Fe/Si. The fore process was steeper than later one. The decreasing ratios of Pd/Si and Fe/Si indicated the Pd and Fe atoms diffuse into the Si substrate in both systems of bilayers with different relative positions. The similar tendencies of Fe/Pd and Pd/Fe curves were also found in both systems. At relative high temperature, the Fe/Pd and Pd/Fe curves crossed at different thickness of iron layer, respectively. Our study provides detailed information about the thermal stability and the alloy formation in Pd-Fe bilayers on Si(111), which will be valuable in future applications.

    致謝......................................................Ⅰ 摘要......................................................ⅢAbstract .................................................Ⅳ 第一章 引言................................................1 第二章 基本原理與概念 2.1 矽基板的結構與特性 2.1.1 矽的鑽石結構.....................................2 2.1.2 矽(111)的重構結構p(7X7) ......................2 2.2薄膜成長理論 2.2.1 薄膜成長之表面動力學過程................4 2.2.2 薄膜成長模式..................................5 2.3磁性材料 2.3.1 磁性物質之種類......................7 2.3.2 鐵磁性材料....................................9 第三章 實驗儀器 3.1 超高真空系統......................................11 3.2 歐傑電子能譜系統(AES system) 3.2.1 基本原理....................................14 3.2.2 AES真空系統介紹.............................16 3.2.3 AES大氣系統介紹.............................17 3.2.4 AES操作流程.................................19 第四章 實驗與結果 4.1 實驗動機 4.1.1 合金選擇....................................23 4.1.2 鈀與氫氣....................................24 4.1.3 FePd合金與氫氣吸附之理論文獻................26 4.2 實驗流程 4.2.1矽基板清理與真空腔烘烤.......................28 4.2.2 鍍槍清理....................................30 4.2.3 鍍雙層金屬薄膜與AES量測.....................31 4.2.4 從薄膜到合金與AES量測.......................33 4.2.5 矽基板重複使用..............................35 4.2.6 溫度校正. ..................................37 4.3 實驗結果與討論 4.3.1 加熱能量與溫度校正圖........................38 4.3.2 實驗一成份AES訊號比值與溫度關係圖 4.3.2.1 Fe/Si、Pd/Si之AES訊號比值與溫度關係圖...40 4.3.2.2 Fe/Pd、Pd/Fe之AES訊號比值與溫度關係圖...42 4.3.3 實驗二AES圖和成份AES訊號比值與時間關係圖 4.3.3.1 實驗二之AES圖...........................44 4.3.3.2 實驗二成份AES訊號比值與時間關係圖.......45 第五章 總結 5.1 實驗一結論........................................47 5.2 實驗二結論........................................48 5.3 後記..............................................49 文獻......................................................50

    第一章
    [1-1] L. Li, F. S. Wen, F. Zhang, Y. F. Lü, Y. F. Lu, Z. Y. Liu, B. Xu, D. L. Yu,
    J. L. He, and Y. J. Tian, Journal of Applied Physics 107, 123912 (2010)

    [1-2] F. S. Wen, F. Zhang, Y. F. Lü, J. Y. Xiang, W. Li, Y. F. Lu, Z. Y. Liu, B. Xu, D. L. Yu, J. L. He, and Y. J. Tian, Journal of Applied Physics 110, 043918 (2011)

    [1-3] Phys. Chem. Chem. Phys., 13, 11412–11421 (2011)

    [1-4] Wen-Chin Lin, Cheng-Jui Tsai, Bo-Yao Wang, Chao-Hung Kao, and Way-Faung Pong, Appl. Phys. Lett. 102, 252304 (2013)

    [1-5] Wen-Chin Lin,Chiao-Sung Chi, Tsung-Ying Ho, Cheng-Jui Tsai,
    Thin Solid Films, 531, 487 (2013)

    [1-6] Wen-Chin Lin,Chiao-Sung Chi, Tsung-Ying Ho, Cheng-Jui Tsai, Fang-Yuh Lo, Huan-Chia Chuang, and Ming-Yau Chern J. Appl. Phys. 112, 063914 (2012)

    第二章
    [2-1]林逢祺、洪仁進 主編,教育哲學:隱喻篇。台北市,學富文化(2013)

    [2-2]X.Z. Lin, J. Li, Q.H. Wu, Nanoscale Res Lett, 5:143-148 (2010)

    [2-3]L. Libralesso, T. Schroeder, T.-L. Lee, J. Zegenhagen, Surface Science 598 L347-L354 (2005)

    [2-4]D. R. Lide,Handbook of Chemistry and phys.,72nd ed.,Chemical Rubber Publishing Company, England, 257 (1991-1992)

    第三章
    [3-1] 2006-2014 Physical Electronics,Inc (http://www.phi.com/surface-analysis-techniques/aes.html)

    [3-2]莊孟勳AES系統架設及Co/W(111)之磁性量測 (2009)

    第四章
    [4-1]X.N. Sun, X.Y. Xu, Z.B. Tang, G.S. Dong and X.F. Jin, Physics Letters A 372, 1687-1690 (2008)

    [4-2] P. V. Jasen, E. A. Gonzalez, N. J. Castellani, and A. Juan, Physical Review B 71, 235422 (2005)

    下載圖示
    QR CODE