簡易檢索 / 詳目顯示

研究生: 陳又瑞
Chen, You-Ruei
論文名稱: 鈉超離子導體型固態電解質之鋰二氧化碳電池
Na Superionic Conductor (NASICON)-Type of Solid-State Electrolyte Lithium Carbon Dioxide Battery
指導教授: 胡淑芬
Hu, Shu-Fen
口試委員: 江佩勳
Jiang, Pei-Hsun
劉佳兒
Liu, Chia-Erh
胡淑芬
Hu, Shu-Fen
口試日期: 2022/07/11
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 固態鋰二氧化碳電池鋰鋁鍺磷Ru/CNT陰極
英文關鍵詞: Solid-state Li–CO2 batteries, LAGP, Ru/CNT cathode
研究方法: 實驗設計法次級資料分析主題分析比較研究觀察研究內容分析法
DOI URL: http://doi.org/10.6345/NTNU202300764
論文種類: 學術論文
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電池為現今科技重要之儲能系統,鋰電池即為目前最普遍之儲能產物,然其液態電解質存在漏液、爆炸等安全問題,故為解決上述問題,固態電池成為次世代電池之主要研究方向。此外,因應全球溫室效應產生二氧化碳氣體,故鋰二氧化碳電池之研發尤為重要。鋰二氧化碳電池之能量密度約為1876 Wh kg−1,優於目前市售鋰離子電池僅300 Wh kg−1之能量密度,此優勢顯示未來儲能之潛在應用前景。
    本研究乃使用鋰鋁鍺磷(Li1.6Al0.5Ge1.5(PO4)3; LAGP)作為固態電解質製作固態鋰二氧化碳電池,陰極使用釕奈米顆粒修飾之多壁奈米碳管(Ru@MWCNT),並研究不同陰極觸媒對於電池性能之影響。Ru/CNTs陰極觸媒於固態鋰二氧化碳電池中扮演至關重要之作用。此陰極具大表面積、放電容量、優異之可逆性、長循環壽命與低過電位。因其活性位點增加,助於提升二氧化碳還原與析出反應之性能。Ru/CNTs陰極之固態鋰二氧化碳電池最大放電容量為4541 mAh g−1且電池壽命為45次循環,電位差為1.24 V。

    The battery is an important energy storage system in today's technology. Lithium battery is the most common energy storage product. However, its liquid electrolyte has safety problems such as leakage and explosion. To solve these problems, solid-state batteries have become the main research for next-generation batteries. Moreover, because of CO2 gas in the global greenhouse effect, the research on Li–CO2 batteries is particularly important. The energy density of the Li–CO2 is about 1876 Wh kg−1, which is better than the energy density of the current commercially available Li-ion battery, which is only 300 Wh kg−1. This advantage shows the potential application of energy storage in the future.
    In this study, Li1.6Al0.5Ge1.5(PO4)3 (LAGP) is used as the solid electrolyte to fabricate a solid-state Li–CO2 battery and the cathode uses Ru nanoparticle-modified multi-wall carbon nanotubes (Ru@MWCNTs), then study the effect of different cathode catalysts on battery performance. Ru/CNTs electrocatalysts play a crucial role in solid-state Li–CO2 batteries. Its cathodes have a large surface area, discharge capacity, excellent reversibility, long cycle life, and low overpotential. Due to the increased active sites, this electrocatalyst could enhance the performance of CO2 reduction and evolution reactions. The solid-state Li–CO2 battery with Ru/CNTs cathode has a maximum discharge capacity of 4541 mAh g−1 and a battery life of 45 cycles with a potential difference of 1.24 V.

    謝誌 i 摘要 i Abstract iii 總目錄 iv 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1電池之發展 2 1.1.1一次電池 3 1.1.2二次電池 4 1.2二次電池之概述 5 1.2.1鋰離子電池 6 1.2.2鋰空氣電池 9 1.2.3鋰氧氣電池 9 1.2.3.1鋰氧氣電池之反應機制 10 1.2.4鋰二氧化碳電池 13 1.2.4.1鋰二氧化碳電池之反應機制 14 1.3鋰二氧化碳電池之體系 15 1.3.1有機溶劑體系 15 1.3.2聚合物電解質體系 17 1.3.3無機固態電解質體系 20 1.4常見之鋰二氧化碳電池陰極觸媒 21 1.4.1碳材料 22 1.4.2貴金屬 24 1.4.3金屬氧化物 25 1.5無機固態電解質之簡介 25 1.5.1石榴石型固態電解質 26 1.5.2鈉超離子導體型電解質 27 1.6固態電解質界面 30 1.7固態鋰二氧化碳電池之發展 34 1.8研究動機與目的 35 第二章 實驗步驟與儀器分析原理 37 2.1化學藥品 37 2.2實驗步驟 38 2.2.1釕奈米粒子/奈米碳管複合材料之合成 38 2.2.2陰極觸媒漿料與電極配置 39 2.2.3固態鋰二氧化碳電池之組裝 40 2.3儀器分析原理 41 2.3.1 X光繞射儀(X-ray diffractometer; XRD) 42 2.3.2掃描式電子顯微鏡(Scanning electron microscopy; SEM) 45 2.3.3穿透式電子顯微鏡(Transmission electron microscopy; TEM) 46 2.3.4拉曼光譜儀(Raman spectrometer) 48 2.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 50 2.3.6 X光吸收光譜(X-ray absorption spectroscopy; XAS) 52 2.3.7氣相層析質譜儀(Gas Chromatography-Mass Spectrometry) 55 2.3.8循環伏安法(Cyclic voltammetry; CV) 56 2.3.9充放電測試儀(Cycling machine) 58 2.3.10電化學阻抗譜(Electrochemical impedance spectroscopy; EIS) 59 第三章 結果與討論 61 3.1固態鋰二氧化碳電池之鑑定與分析 61 3.1.1釕奈米粒子/多壁奈米碳管複合材料之鑑定 61 3.1.2 LAGP固態電解質之鑑定與電性分析 66 3.1.3穩定性循環充放電與最大放電測試 70 3.1.4陰陽極與固態電解質界面穩定性之鑑定 73 3.2全固態鋰二氧化碳電池之鑑定與分析 77 3.2.1界面材料丁二腈之配置與鑑定 77 3.2.2電化學阻抗譜比較 79 3.2.3對稱電池穩定性循環測試 81 3.2.4穩定性充放電循環測試 82 第四章 結論 83 參考文獻 84

    [1] Lu, Y.; Rong, X.; Hu, Y. S.; Chen, L.; Li, H. Research and Development of Advanced Battery Materials in China. Energy Storage Mater. 2019, 23, 144–153.
    [2] Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127.
    [3] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
    [4] Nagaura, T. Lithium Ion Rechargeable Battery. Progress in Batteries & Solar Cells 1990, 9, 209.
    [5] Padhi, A.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.
    [6] Sun, J.; Li, Y.; Guo, X. Enhanced Cathode/Electrolyte Interface in Solid-State Li-Metal Battery Based on Garnet-Type Electrolyte. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2022, 37, 149–154.
    [7] Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium−Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.
    [8] Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1–5.
    [9] Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; et al. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683.
    [10] Jung, K. N.; Kim, J.; Yamauchi, Y.; Park, M. S.; Lee, J. W.; Kim, J. H. Rechargeable Lithium–Air Batteries: A Perspective on the Development of Oxygen Electrodes. J. Mater. Chem. A 2016, 4, 14050–14068.
    [11] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.
    [12] Chang, Z.; Xu, J.; Zhang, X. Recent Progress in Electrocatalyst for Li–O2 Batteries. Adv. Energy Mater. 2017, 7, 1700875.
    [13] Lee, H.; Lee, D. J.; Kim, M.; Kim, H.; Cho, Y. S.; Kwon, H. J.; Lee, H. C.; Park, C. R.; Im, D. High-Energy Density Li–O2 Battery with a Polymer Electrolyte-Coated CNT Electrode Via the Layer-by-Layer Method. ACS Appl. Mater. Interfaces 2020, 12, 17385–17395.
    [14] Takechi, K.; Shiga, T.; Asaoka, T. A Li‒O2/CO2 Battery. Chem. Commun. 2011, 47, 3463–3465.
    [15] Xu, S.; Das, S. K.; Archer, L. A. The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656–6660.
    [16] Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Rechargeable Li/CO2–O2 (2 : 1) Battery and Li/CO2 Battery. Energy Environ. Sci. 2014, 7, 677–681.
    [17] Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent Advances in Understanding Li–CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 887–922.
    [18] Németh, K.; Srajer, G. CO2/Oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal–Air Type Rechargeable Batteries. RSC Adv. 2014, 4, 1879–1885.
    [19] Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J. Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
    [20] Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J. j.; Zhou, H. A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978.
    [21] Sun, X.; Hou, Z.; He, P.; Zhou, H. Recent Advances in Rechargeable Li–CO2 Batteries. Energy Fuels 2021, 35, 9165–9186.
    [22] Manuel Stephan, A. Review on Gel Polymer Electrolytes for Lithium Batteries. Eur. Polym. J. 2006, 42, 21–42.
    [23] Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. A Rechargeable Li‒CO2 Battery with a Gel Polymer Electrolyte. Angew. Chem. Int. Ed. 2017, 56, 9126–9130.
    [24] Peng, J.; Wu, L. N.; Lin, J. X.; Shi, C. G.; Fan, J. J.; Chen, L. B.; Dai, P.; Huang, L.; Li, J. T.; Sun, S. G. A Solid-State Dendrite-Free Lithium-Metal Battery with Improved Electrode Interphase and Ion Conductivity Enhanced by a Bifunctional Solid Plasticizer. J. Mater. Chem. A 2019, 7, 19565–19572.
    [25] Qiu, G.; Shi, Y.; Huang, B. A Highly Ionic Conductive Succinonitrile-Based Composite Solid Electrolyte for Lithium Metal Batteries. Nano Res. 2022.
    [26] Du, Y.; Liu, Y.; Yang, S.; Li, C.; Cheng, Z.; Qiu, F.; He, P.; Zhou, H. A Rechargeable All-Solid-State Li–CO2 Battery Using a Li1.5Al0.5Ge1.5(PO4)3 Ceramic Electrolyte and Nanoscale RuO2 Catalyst. J. Mater. Chem. A 2021, 9, 9581–9585.
    [27] Jiao, Y.; Qin, J.; Sari, H. M. K.; Li, D.; Li, X.; Sun, X. Recent Progress and Prospects of Li–CO2 Batteries: Mechanisms, Catalysts and Electrolytes. Energy Storage Mater. 2021, 34, 148–170.
    [28] Li, X.; Zhang, J.; Qi, G.; Cheng, J.; Wang, B. Vertically Aligned N-Doped Carbon Nanotubes Arrays as Efficient Binder-Free Catalysts for Flexible Li–CO2 Batteries. Energy Storage Mater. 2021, 35, 148–156.
    [29] Zhang, J.; Wang, F.; Qi, G.; Cheng, J.; Chen, L.; Liu, H.; Wang, B. Rechargeable Li–CO2 Batteries with Graphdiyne as Efficient Metal-Free Cathode Catalysts. Adv. Funct. Mater. 2021, 31, 2101423.
    [30] Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z. Rechargeable Li–CO2 Batteries with Carbon Nanotubes as Air Cathodes. Chem. Commun. 2015, 51, 14636–14639.
    [31] Xie, H.; Zhang, B.; Hu, C.; Xiao, N.; Liu, D. Boosting Li–CO2 Battery Performances by Creating Holey Structure on CNT Cathodes. Electrochim. Acta 2022, 417, 140310.
    [32] Meesala, Y.; Jena, A.; Chang, H.; Liu, R. S. Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Lett. 2017, 2, 2734–2751.
    [33] Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781.
    [34] Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X. Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources 2014, 248, 642–646.
    [35] Duan, H.; Zheng, H.; Zhou, Y.; Xu, B.; Liu, H. Stability of Garnet-Type Li Ion Conductors: An Overview. Solid State Ion. 2018, 318, 45–53.
    [36] Zhu, Y.; Zhang, Y.; Lu, L. Influence of Crystallization Temperature on Ionic Conductivity Of lithium Aluminum Germanium Phosphate Glass-Ceramic. J. Power Sources 2015, 290, 123–129.
    [37] Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.
    [38] Tong, Z.; Wang, S. B.; Liao, Y. K.; Hu, S. F.; Liu, R. S. Interface between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Appl. Mater. Interfaces 2020, 12, 47181–47196.
    [39] Cheng, Z.; Pan, H.; Li, C.; Mu, X.; Du, Y.; Zhang, F.; Zhang, X.; He, P.; Zhou, H. An in Situ Solidifying Strategy Enabling High-Voltage All-Solid-State Li-Metal Batteries Operating at Room Temperature. J. Mater. Chem. A 2020, 8, 25217–25225.
    [40] Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Mater. Sci. Eng., R 2019, 136, 27–46.
    [41] Cao, W.; Yang, Y.; Deng, J.; Li, Y.; Cui, C.; Zhang, T. Localization of Electrons within Interlayer Stabilizes Nasicon-Type Solid-State Electrolyte. Mater. Today Energy 2021, 22.
    [42] Mushtaq, M.; Guo, X. W.; Bi, J. P.; Wang, Z. X.; Yu, H. J. Polymer Electrolyte with Composite Cathode for Solid-State Li–CO2 Battery. Rare Met. 2018, 37, 520–526.
    [43] Wang, R.; Zhang, X.; Cai, Y.; Nian, Q.; Tao, Z.; Chen, J. Safety-Reinforced Rechargeable Li–CO2 Battery Based on a Composite Solid State Electrolyte. Nano Res. 2019, 12, 2543–2548.
    [44] Thoka, S.; Tsai, C. M.; Tong, Z.; Jena, A.; Wang, F. M.; Hsu, C. C.; Chang, H.; Hu, S. F.; Liu, R. S. Comparative Study of Li–CO2 and Na–CO2 Batteries with Ru@CNT as a Cathode Catalyst. ACS Appl. Mater. Interfaces 2021, 13, 480–490.
    [45] Tong, Z.; Wang, S. B.; Fang, M. H.; Lin, Y. T.; Tsai, K. T.; Tsai, S. Y.; Yin, L. C.; Hu, S. F.; Liu, R. S. Na–CO2 Battery with Nasicon-Structured Solid-State Electrolyte. Nano Energy 2021, 85, 105972.

    下載圖示
    QR CODE