簡易檢索 / 詳目顯示

研究生: 曾煥升
Huan-Sheng Tseng
論文名稱: 脲酶活性中心之雙鎳擬態化合物合成及其對硫醇類與a, b烯酮類未飽合鍵共軛加成催化反應之研究
Dinickel Mimics for the Active Site of Urease and Their Catalysis toward Conjugate Addition of Thiols to a,b-Unsaturated Carbonyl Compounds
指導教授: 李位仁
Lee, Way-Zen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 雙鎳擬態模型錯合物脲酶模型錯合物雙取代苯甲酸根多牙基
英文關鍵詞: dinickel mimics, urease model, disubstituted benzoate polydentate ligand
論文種類: 學術論文
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以含苯咪唑或吡啶的多牙配位基合成出一系列的鎳錯合物,並利用紅外線、核磁共振、質譜、紫外光-可見光等光譜,以及X-光結構解析等方法,完成一系列鎳錯合物的鑑定。配位著雙(1-甲基苯咪唑-2-甲基)胺三牙基(L1)的鎳錯合物,其鎳金屬中心的配位環境均為八面體的幾何構形,而配位著雙(1-甲基苯咪唑-2-甲基)-10-樟腦磺醯胺配位基(L2)的鎳錯合物則可為四面體、四角錐、或八面體的幾何構形。鍵結著L1或L2配位基的鎳錯合物,其鎳金屬的核數可藉由調控苯咪唑配位基中央氮原子的配位能力來控制;同時,這些鎳錯合物的核數也會隨溫度的變化而有所不同。若鎳金屬錯合物配位著含雙取代苯甲酸根多牙基(L6、L7或L8),則兩鎳金屬離子會與配位基的苯甲酸根形成W型的鍵結方式,同時每個鎳金屬中心均為八面體的配位環境。尿素分子可以配位至雙取代苯甲酸根錯合物的鎳金屬離子中心。由具尿素配位化合物的順磁性核磁共振氫光譜顯示,尿素分子在溶液中仍配位在鎳金屬離子上。由尿素與鎳金屬離子鍵結的事實,激勵我們以鎳錯合物對硫醇類與烯酮類a, b未飽合鍵進行共軛加成催化反應之研究。在我們的系統中得到了高產率的共軛加成產物,並發現親核基的共軛效應較誘導效應主導共軛加成產率的高低。

    A series of nickel complexes supported by a benzimidazolyl or pyridinyl polydentate ligand have been synthesized and fully characterized by FT-IR, NMR, ESI-MS, UV-vis spectroscopies, and X-ray crystallography. Complexes coordinated with the tridentate bis(1-methylbenzimidazolyl-2-methyl)amine ligand exhibited an octahedral geometry at the nickel center, whereas the geometry of the complexes supported with the bis(1-methylbenzimidazolyl-2-methyl)-
    10-camphorsulfonamide ligand could be tetrahedral, square pyramidal, or octahedral. The nuclearity of the nickel complexes with the tripodal ligand can be controlled by modulating the coordinating ability of the center nitrogen of the supported benzimidazolyl ligand; meanwhile, the nuclearity of those complexes is temperature dependent. If the nickel complexes coordinated by a disubstituted benzoate polydentate ligand, a W-shaped dinickel core with the carboxylate group of the benzoate ligand was formed, and each nickel center possessed an octahedral geometry. Urea molecules can coordinate to the nickel centers of the disubstituted benzoate complexes. The paramagnetic 1H-NMR spectra of the dinickel urea adducts reveal that the urea molecule remain bound in the solution. The bonding of urea inspires us to exam the conjugate addition of thiols to ,-unsaturated carbonyl compounds catalyzed by the dinickel complexes bearing solvent molecules. High yields for the conjugate additions were observed, and the yield was found to be more dominated by the conjugate effect than the inductive effect in our system.

    中文摘要……………………………………………………………….…….I 英文摘要.….........………………………………………………….....…....Ⅱ 第一章 緒論 1-1前言…………………………..………………….…………………..1 1-2脲酶的簡介…………………………………………..….…………..2 1-3脲酶擬態化合物相關文獻探討…..…………………………….…..6 1-4研究方向…………………………………………………………...16 第二章 實驗部分 2-1一般實驗…..…….………………………………………………....17 2-2儀器…………………………...……………………………………18 2-3溶劑…………………………………………..…………………….20 2-4藥品……………………………………..………………………….21 2-5配位基的合成與鑑定……………………………………………...24 2-5.1配位基L1之合成………………..………………………….26 2-5.2配位基L2之合成………………..………………………….27 2-5.3配位基HL3之合成…….………..………………………….28 2-5.4配位基HL4之合成….…………..………………………….29 2-5.5配位基HL5之合成….…………..………………………….31 2-5.6配位基HL6之合成….………….….……………………….32 2-5.7配位基HL7之合成….……………...……..….…………….36 2-5.8配位基HL8之合成….….………..………...……………….38 2-6化合物的合成與鑑定……………..……………………………….42 2-6.1錯合物[L1Ni(CH3OH)2Cl]Cl•2H2O (1)之合成………….......42 2-6.2錯合物[L1Ni(-Cl)Cl]2•4CH3OH (2)之合成...........................42 2-6.3錯合物[L1Ni(Ph2CHCOO)2(CH3OH)]•CH3OH (3)之合成....43 2-6.4錯合物[(L1)2Ni2(-OAc)3]Cl•2H2O•4CH3OH (4)之合成.......44 2-6.5錯合物[L1Ni(CH3CN)3](ClO4)2•2CH3CN (5)之合成.............44 2-6.6錯合物[(L1)2Ni](ClO4)2•4CH3CN (6)之合成..........................45 2-6.7錯合物[(L1)2Ni2(-OAc)3](ClO4)•3H2O (7)之合成................46 2-6.8錯合物[(L1)2Ni2(-OAc)3](ClO4)•urea (8)之合成..................47 2-6.9錯合物[L2NiCl2] (9)之合成……………………....................47 2-6.10錯合物[L2Ni(-Cl)Cl]2•4CH2Cl2 (10)之合成…...................48 2-6.11錯合物[L2Ni(OAc)2]•0.5Et2O (11)之合成……....................49 2-6.12錯合物[L2Ni(CH3CN)3](ClO4)2•2CH3CN (12)之合成.........49 2-6.13錯合物[L3Ni(OAc)(H2O)] (13)之合成.................................50 2-6.14錯合物[L3Ni(-Cl)]2•4CH3OH (14)之合成..........................51 2-6.15錯合物{[L3Ni(DMF)](ClO4)•DMF}∞ (15)之合成................52 2-6.16錯合物[(L4)2Ni2(-OAc)]Cl•0.5CH2Cl2•1.25H2O (16)之合成..52 2-6.17錯合物{[L4Ni(H2O)](NO3)}4•CH3CN•2.5H2O (17)之合成........53 2-6.18錯合物{[L4Ni](NO3)•CH3OH}∞ (18)之合成..............................54 2-6.19錯合物[(L5)2Ni2(H2O)2](NO3)2 (19)之合成................................54 2-6.20錯合物[L6Ni2(DMF)4](ClO4)3•DMF•CH3OH (20)之合成......... 55 2-6.21錯合物[L6Ni2(urea)4](ClO4)3•2CH3OH•urea (21)之合成............56 2-6.22錯合物[L6Ni2(pic)2](ClO4)3•3CH3CN•H2O (22)之合成..............57 2-6.23錯合物[L6Ni2(-OH)2](ClO4)•2CH3CN (23)之合成...................58 2-6.24錯合物[L6Ni2(NO3)2](NO3)•CH3CN•H2O (24)之合成................58 2-6.25錯合物[L6Ni2(urea)3(NO3)](NO3)2•urea•H2O (25)之合成...........59 2-6.26錯合物[L7Ni2(CH3CN)4](ClO4)3•2CH3CN•0.5H2O (26)之合成..60 2-6.27錯合物[L7Ni2(urea)4](ClO4)3•2CH3CN (27)之合成.....................61 2-6.28錯合物[L8Ni2(THF)(CH3CN)](ClO4)3 (28)之合成......................62 2-6.29錯合物[L8Ni2(urea)2](ClO4)3•2CH3CN (29)之合成.....................63 2-6.30錯合物[(L8)2Ni4(-Ph2CHCOO)2](ClO4)4•5CH3CN•2THF (30) 之合成.........................................................................................63 2-6.31錯合物[(L8)2Ni4(-OAc)2](ClO4)4•3H2O (31)之合成..................64 2-7催化thia-michael addition……………..............…………....................65 2-7.1 2-cyclohexen-1-one(i)與thiol衍生物的催化反應………………65 2-7.2 5-methyl-3-hexen-2-one(ii)與thiol衍生物的催化反應….......68 第三章 結果與討論 3-1配位基的合成探討…………….………………………....……….77 3-2含配位基L1,L2錯合物的結果探討(錯合物1~12)……............….80 3-2.1含配位基L1,L2錯合物的合成..........................……...….80 3-2.2含配位基L1,L2錯合物之X光結構解析........................….86 3-2.3含配位基L1,L2錯合物之光譜數據分析.......................….89 3-2.4結論……………………………………….......................….93 3-3含配位基L3,L4,L5錯合物的結果探討(錯合物13~19)............95 3-3.1含配位基L3,L4,L5錯合物的合成..................……...….95 3-3.2含配位基L3,L4,L5錯合物之X光結構解析............….99 3-3.3含配位基L3,L4,L5錯合物之光譜數據分析...........….101 3-3.4結論.......................................................................……..…103 3-4含配位基L6,L7錯合物的結果探討(錯合物20~27).................104 3-4.1含配位基L6,L7錯合物的合成........................................104 3-4.2含配位基L6,L7錯合物之X光結構解析.......................109 3-4.3含配位基L6,L7錯合物之光譜數據分析........................112 3-4.4結論.....................................................................................116 3-5含配位基L8錯合物的結果探討(錯合物28~31).........................118 3-5.1含配位基L8錯合物的合成................................................118 3-5.2含配位基L8錯合物之X光結構解析...............................121 3-5.3含配位基L8錯合物之光譜數據分析與反應性探討........124 3-5.4結論.....................................................................................130 第四章 結論與未來展望…………………………………………..........131 參考文獻……………………………………………………………….....135 附錄

    1. Krebs, H. A.; Henseleit, K.; Hoppe-Seyler’s, Z. Physiol. Chem. 1932, 210, 33.
    2. Wheland, G. W. Resonance in Organic Chemistry; Wiley: New York, 1955.
    3. Zerner, B. Bioorg. Chem. 1991, 19, 116.
    4. Mulvaney, R. L.; Bremner, J. M. in Soil Biochemistry, New York, 1981, pp 153.
    5. Mobley, H. L. T.; Island, M. D.; Hausinger, R. P. Microbiol. Rev. 1995, 59, 451.
    6. Blakeley, R. L.; Treston, A.; Andrews, R. K.; Zerner, B. J. Am. Chem. Soc. 1982, 104, 612.
    7. Sumner, J. B. J. Biol. Chem. 1926, 69, 435.
    8. Dixon, N. E.; Gazzola, C.; Blakeley, R.; Zerner, B. J. Am. Chem. Soc. 1975, 97, 4131.
    9. (a) Dixon, N. E.; Blakeley, R. L.; Zerner, B. Can. J. Biochem. 1980, 58, 481. (b) Blakeley, R. L.; Dixon, N. E.; Zerner, B. Biochim. Biophys. Acta 1983, 74, 219.
    10. (a) Hasnain, S. S.; Piggot, B. Biochem. Biophys. Res. Commun. 1983, 112, 279. (b) Alagna, L.; Hasnain, S. S.; Piggot, B.; Williams, D. J. Biochem. J. 1984, 220, 591.
    11. Clark, P. A.; Wilcox, D. E. Inorg. Chem. 1989, 28, 1326.
    12. Wang, S.; Lee, M. H.; Hausinger, R. P.; Clark, P. A.; Wilcox, D. E.; Scott, R. A. Inorg. Chem. 1994, 33, 1589.
    13. (a) Todd, M. J.; Hausinger, R. P. J. Biol. Chem. 1987, 262, 5963. (b) Benini, S.; Gessa, C.; Ciurli, S. Soil Biol. Biochem. 1996, 28, 819.
    14. (a) Jabri, E.; Carr, M. B.; Hausinger, R. P.; Karplus, P. A. Science 1995, 268, 998; (b) Park, I. S.; Michel, L. O.; Pearson, M. A.; Jabri, E.; Karplus, P. A.; Wang, S.; Dong, J.; Scott, R. A.; Koehler, B. P. J. Biol. Chem. 1996, 271, 18632; (c) Pearson, M. A.; Michel, L. O.; Hausinger, R. P.; Karplus, P. A. Biochemistry 1997, 36, 8164; (d) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Ciurli, S.; Mangani, S. J. Biol. Inorg. Chem. 1998, 3, 268; (e) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Ciurli, S.; Mangani, S. Structure 1999, 7, 205; (f) Ha, N. C.; Oh, S. T.; Sung, J. Y.; Cha, K. A.; Lee, M. H.; Oh, B. H. Nat. Struct. Biol. 2001, 8, 505; (g) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Ciurli, S.; Mangani, S. J. Biol. Inorg. Chem. 2001, 6, 778; (h) Ciurli, S.; Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Mangani, S., Coord. Chem. Rev. 1999, 190, 331; (i) Todd, M. J.; Hausinger, R. P., Biochemistry 2000, 39, 5389.
    15. Park, I. S.; Hausinger, R. P. Science 1995, 267, 1156.
    16. Buchanan, R. M.; Mashuta, M. S.; Oberhausen, K. J.; Richardson, J. F.; Li, Q.; Hendrickson, D. N. J. Am. Chem. Soc. 1989, 205, 111, 4497.
    17. Wages, H. E.; Taft, K. L.; Lippard, S. J. Inorg. Chem. 1993, 32, 4985.
    18. Volkmer, D.; Hommerich, B.; Griesar, K.; Haaseand, W.; Krebs, B. Inorg. Chem. 1996, 35, 3792.
    19. Yamaguchi, K.; Koshino, S.; Akagi, F.; Suzuki, M.; Uehara, A.; Suzuki, S. J. Am. Chem. Soc. 1997, 119, 5752.
    20. Koga, T.; Furutachi, H.; Nakamura, T.; Fukita, N.; Ohba, M.; Takahashi, K.; Okawa, H. Inorg. Chem. 1998, 37, 989.
    21. (a) Meyer, F.; Pritzkow, H. Chem. Commun. 1998, 1555; (b) Kryatov, S. V.; Rybak-Akimova, E. V.; Meyer, F.; Pritzkow, H. Eur. J. Inorg. Chem. 2003, 1581; (c) Buchler, S.; Meyer, F.; Kaifer, E.; Pritzkow, H. Inorg. Chim. Acta 2002, 337, 371; (d) Meyer, F.; Kaifer, E.; Kircher, P.; Heinze, K.; Pritzkow, H. Chem. Eur. J. 1999, 5, 1617; (e) Konrad, M.; Meyer, F.; Jacobi, A.; Kircher, P.; Rutsch, P.; Zsolnai, L. Inorg. Chem. 1999, 38, 4559;
    22. (a) Barrios, A. M.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 11751; (b) Barrios, A. M.; Lippard, S. J. J. Am. Chem. Soc. 2000, 122, 9172; (c) Barrios, A. M.; Lippard, S. J. Inorg. Chem. 2001, 40, 1250; (d) Lippard, S. J. Science 1995, 268, 996.
    23. Blakeley, R. L.; Hinds, J. A.; Kunze, H. E.; Webb, E. C.; Zerner, B. Biochemistry 1969, 5, 1991.
    24. (a) Carlsson, H.; Haukka, M.; Nordlander, E. Inorg. Chem. 2002, 41, 4981; (b) Carlsson, H.; Haukka, M.; Bousseksou, A.; Latour, J.; Nordlander, E. Inorg. Chem. 2004, 43, 8252.
    25. Meyer, F.; Beyreuther, S.; Heinze, K.; Zsolnai, L. Chem. Ber. Recueil, 1997, 130, 605.
    26. Adams, H.; Bailey, N. A.; Crane, J. D.; Fenton, D. E.; Latour, J. M.; Williams, J. M. J. Chem. Soc., Dalton Trans. 1990, 1727.
    27. Martin, N.; Stephen, S. M.; Donald, J. C. J. Am. Chem. Soc. 1977, 99, 6405.
    28. (a) McDaid, P.; Chen, P.; Deng, L. Angew. Chem. Int. Ed. 2002, 41, 338; (b) Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem. 2003, 68, 7098.
    29. Gutkina, E. A.; Trukhan, V. M.; Pierpont, C. G.; Mkoyan, S. M.; Strelets, V. V.; Nordlander, E.; Shteinman, A. Dalton Trans. 2006, 492.
    30. Addison, A. W.; Rao, N. T.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1394.
    31. (a) Shimazaki, Y.; Huth, S.; Karasawa, S.; Hirota, S.; Naruta, Y.; Yamauchi, O. Inorg. Chem. 2004, 43, 7816; (b) Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed., Elsevier: New York, 1984; (c) Sacconi, L.; Mani, F.; Bencini, A. Comprehensive Coordination Chemistry, Wilkinson, G., Ed., Pergamon: Oxford, 1987; Vol. 5, Chapter 50.
    32. Ngo, T. T.; Phan, A. P. H.; Yam, C. F.; Lenhoff, H. M. Anal. Chem. 1982, 54, 46.
    33. (a) Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res.1997, 30, 330; (b) Pearson, M. A.; Park, I. S.; Schaller, R. A.; Michel, L. O.; Karplus, P. A.; Hausinger, R. P. Biochemistry 2000, 39, 8575; (c) Warshel, A.; Strajbl, M.; Villa, J.; Florian, J. Biochemistry 2000, 39, 14728; (d) Estiu, G.; Merz, K. M. Jr., J. Am. Chem. Soc. 2004, 126, 11832.
    34. (a) Mitic, N.; Smith, S. J.; Neves, A.; Guddat, L. V.; Gahan, L. R.; Schenk, G. Chem. Rev. 2006, 106, 3338; (b) Schenk, G.; Gahan, L. R.; Carrington, L. E.; Mitic, N.; Valizadeh, M.; Hamilton, S. E.; Jersey, J. D.; Guddat, L. W. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 273; (c) Klabunde, T.; Strater, N.; Frohlich, R.; Witzel, H.; Krebs, B. J. Mol. Biol. 1996, 259, 737.
    35. (a) Aubert, S. D.; Li, Y.; Raushel, F. M. Biochemistry 2004, 43, 5707; (b) Thoden, J. B.; Marti-Arbona, R.; Raushel, F. M.; Holden, H. M. Biochemistry 2003, 42, 4874.
    36. Belle, C.; Bougault, C.; Averbuch, M. T.; Durif, A.; Pierre, J. L.; Latour, J. M.; Pape, L. Le. J. Am. Chem. Soc. 2001, 123, 8053.
    37. (a) Yin, Y.; Li, X.; Lee, D. S.; Yang, T. K., Tetrahedron: Asymmetry 2000, 11, 3329; (b) Gibson, C. L., Tetrahedron: Asymmetry 1996, 7, 3357; (c) Kang, J.; Kim, J. I.; Lee, J. H.; Kim, H. J.; Byun, Y. H., Bull. KoreanChem. Soc. 1998, 19, 601; (d) Christoffers, J.; Mann, A.; Pickardt, J. Tetrahedron 1999, 55, 5377; (e) Christoffers, J.; Robler, U. Tetrahedron: Asymmetry 1999, 10, 1207; (f) Christoffers, J.; Mann, A. Eur. J. Org. Chem. 1999, 1475; (g) Christoffers, J.; Robler, U. Tetrahedron: Asymmetry 1998, 9, 2349.
    38. Khatik, G. L.; Kumar, R. ; Chakraborti, A. K. Org. Lett. 2006, 8, 2433.

    無法下載圖示 本全文未授權公開
    QR CODE