研究生: |
賴容瑩 Rong-Ying Lai |
---|---|
論文名稱: |
國一學生最大公因數與最小公倍數解題困難之研究 The Study of Seventh Grade Students’Problem-Solving Difficulties in Greatest Common Divisor and Least Common Multiple |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 因數 、倍數 、公因數 、公倍數 、最大公因數 、最小公倍數 |
英文關鍵詞: | factor, multiple, common factor, common multiple, greatest common divisor, least common multiple |
論文種類: | 學術論文 |
相關次數: | 點閱:400 下載:100 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是要探討國一學生在解最大公因數與最小公倍數相關試題時所遇到的困難,進而了解學生在解題時,為何分不清楚應該使用最大公因數與最小公倍數的原因。
本研究為質性的探索性研究。研究之初,研究者先以一般的例行性試題對學生進行晤談,但發現學生會使用其記憶中的解題技巧來幫助自己解題,因此在與指導教授及研究小組討論後,決定發展非例行性試題來了解學生的解題情形,此階段為本研究的第一階段──探索期。接著進入第二階段──創造期,主要是在開發新的非例行性試題,藉由訪談不同能力的學生及考量其問題基模,並且透過預試來了解本試題的功效。
本研究的第三階段為實踐期,這階段開始時發現只以單一試題較為薄弱,故將創造期發展的試題與另一結構相同但解題概念不同的試題合併為「最大公因數與最小公倍數之診斷試題」,作為正式的研究工具。進行方式式訪談24位不同能力及不同性別的國一學生,以了解他們解研究工具的試題時所遇到的困難,以及他們無法分清楚應該是求最大公因數與最小公倍數的原因。
透過質性與量化的資料分析,本研究發現國一學生解最大公因數與最小公倍數相關試題的困難在於:一、有了解題意的困難,多數中、低能力學生無法將題目轉譯成數學式,無法將題目中的條件細分,亦無法找出有用的條件;二、有理解整除概念的困難,多數學生認為整除就是「沒有餘數」而忽略「除出來的商是整數」之條件,此外多數學生無法了解「a可以被b整除」概念中的數值間之關係;三、有理解各基本概念的困難,學生會在「公」、「最大」、「最小」等概念上有誤解的情形發生,且學生也會對兩數之間的因數(倍數、公因數、公倍數、最大公因數、最小公倍數)」關係混淆;四、受試學生過於依賴短除法且在計算過程中容易發生錯誤而影響到其解題;五、受試學生較無法判斷題目中有哪些條件是不必要的;六、受試學生較無法分辨題目中有多於一個的答案;七、部分中、低能力學生僅從題目中的「整除」條件判斷題目可能與因數或倍數有關,但並無法正確判斷出該找因數還是倍數。
至於學生無法分清楚應求最大公因數與最小公倍數的原因有三:一、部分學生的問題基模不夠精緻;二、一般學生以數值的大小來判斷該找因數或倍數,但部分學生卻無法正確判斷出題目中未知數的大小;三、不清楚「a可以被b整除」概念中的數值關係為「a b」或「b a」,因而無法進行正確的判斷。
本研究建議教師必須判別哪些學生在了解題意部分有困難,並針對不了解的部分加強學生對試題的理解能力,另必須加強學生對於整除概念中數值關係的理解,並幫助學生將其具有的問題基模精緻化。
The purpose of this study is two-folded. First, it attempts to find out the difficulties of seventh grade students in solving greatest common divisor and least common multiple problems. Second, it explores why students con not discriminate when to use the concept of greatest common divisor and least common multiple.
This study adopted a qualitatively approach and was executed in three stages, each with its specific purpose. At first, this study began with administering to seventh grades general routine problems. Through in-depth interviews, it was found that students had problem schema and could simply use their memories to solve problems. After discussing with an expert and a research group, it was decided that a new non-routine problem was needed understand where lied the students’ problem-solving difficulties. This was the first stage, namely, the explorative stage. In the second stage, the creative stage, a novel problem format was created for the study. A number of seventh graders were interviewed in order to make sure that the item was unseen at their level. Proper wordings were also decided as a result of the interviews. A pilot study on thirty-seven seventh graders was then executed to test out the proper functioning of the item.
The third stage is the formal stage. Early on in this stage, it was decided that only one item was insufficient, and another problem that have the same structure but different problem-solving concept was created. Together they formed the major test instrument of this study. The formal data collection was done by interviewing twenty-four seventh graders with different academic ability and different gender. Data analysis was performed both qualitatively and quantitatively.
The major finding of this study about the difficulties of seventh graders in greatest common divisor and least common multiple problems were as follows. First, they had difficulties in understanding the problems. Some students could not translate the problems to mathematical representations. Some could not clarify the conditions in the problems, and some could not identify what is the useful condition in the items. Second, they had difficulties in understanding the concept of divisibility, some students think divisibility is equivalent to having no remainders. They tended to neglect the condition that “the quotient is an integer”. Besides, most students could not understand the numerical relationship between A and B in the phrase “ A is divisible by B”. Third, some students had difficulties in basic concepts. They misunderstood the concepts of “common ”,“greatest” and “least” , and they were confused with the relationship among the various terms (i.e. multiple, common factor, common multiple, greatest common divisor and least common multiple). Forth, they tended to rely on short division too much and made mistake easily during the process of using short division. Fifth, they had difficulties about identifying what were the unnecessary condition in the problems. Sixth, some students had difficulties about determining whether there was only one answer or numerous answers to the problems. Seventh, some medium and low ability students knew that the concepts of factors and multiples based on are related to the concept of divisibility. However, they could not determine whether they should find factors or multiples.
Three reasons were identified regarding why students could not discriminate between applying the concept of greatest common divisor or least common multiple. First, they only had partial problem schema to solve the problems. Second, they tend to decide whether to find factors or multiples by whether the number to be formed is big or small. Yet, some students could not correctly determine whether the unknown will be bigger or smaller. Third, they could not understand the numerical relationship between A and B in “ A is divisible by B ”.
This study suggested that mathematics teachers should identify who among the students have problems in understanding the question. Efforts should be directed at helping them to understand the question first. Also, teachers should enhance students’ understanding of the concept of divisibility. Moreover, they should help students to build stronger problem schema with respect to the greatest common divisor and the least common multiple problems.
中文部分
人本教育基金會教學創新小組(2003)。氣質不凡的整數──談質數與質因數分解。人本教育札記,174,82-85。
于國善(2004)。國小學童因數補救教學之個案分析。屏東師範學院數理教育研究所碩士論文。
王詩惠(2003)。因數因數──搞得人七葷八素~~淺談國小五年級學童因數的學習情況。國教世紀,208,101-108。
王詩惠(2004)。開發因數教學模組進行補教教學之研究─以國小五年級學童為例。國立嘉義大學國民教育研究所碩士論文。
任晟蓀(1986)。台東縣國民小學數學科新課程實施現況之研究。國教之聲,19(3),1-22。
朱建正(1997)。國小數學課程的數學理論基礎(1996國科會成果報告,未出版)。
谷超豪(主編)(1995)。數學辭典。台北市:建宏。
李明中(1993)。從基模理論探討學生對氣體粒子行為的批判思考。國立台灣師範大學物理研究所碩士論文。
李浚淵(2003)。以知識結構為主的診斷測驗編製及其在補救教學分組之應用─以國小數學領域五年級因數與倍數單元為例。台中師範學院數學教育學系在職進修教學碩士學位班碩士論文。
何欣玫(2004)。國小六年級學生因數與倍數之數學解題溝通能力之研究。台中師範學院教育測驗統計研究所碩士論文。
吳武雄(1981)。國中生認知發展與科學及數學課程之相關研究。教育學院學報,6,257-277。
李信樂(1975)。因數倍數與質數合數之教學研究。基教月刊,8(5),16-18。
李俐麗(1999)。探討從基模的層面評估國中小數學資優生的數學解題能力。國立台灣師範大學科學教育研究所碩士論文。
林碧珍(1990)。新竹師院輔導區國小數學科「怎樣解題」教材實施情況調查與學習成效研究。新竹師院學報,3,363-391。
林炎全(1994)。現行國中數學科教材適切性之探討。中學教育學報,1,175-187。
林珮如(2002)。國小學童因數解題與迷思概念之研究。屏東師範學院數理教育研究所碩士論文。
邱慧珍(2002)。國小學童倍數解題及迷思概念之研究。屏東師範學院數理教育研究所碩士論文。
南一書局教科書編纂委員會(2002)。國民中學數學教師手冊第一冊。台南市:南一。
涂金堂(2001)。知識結構的評量與改變之研究。國立政治大學教育研究所博士論文。
國立編譯館主編(1994)。國中數學第一冊。台北市:國立編譯館。
陳清義(1995)。國小五年級學童因數、倍數問題學習瓶頸之研究。台北市立師範學院初等教育學系碩士論文。
陳標松(2003)。國小六年級數學學習困難學生因數倍數問題解題之研究。彰化師範大學特殊教育學習在職進修專班碩士論文。
陳筱涵(2004)。高雄地區國一學生因數與倍數單元錯誤類型之分析研究。國立高雄師範大學數學系碩士論文。
連啟舜(2002)。國內閱讀理解教學研究成效之統合分析研究。國立台灣師範大學教育心理與輔導研究所碩士論文。
郭潔瑩、馮振業(1997)。請莫小覷「最小公倍數」。數學教育,4,26-29。
國立教育研究院籌備處(2005)。國民中學數學教師手冊第一冊。台南市:翰林。
康軒文教事業股份公司編輯部(2002)。國民中學數學教師手冊第一冊。台北縣:康軒。
教育部(2003)。國民中小學九年一貫課程綱要數學學習領域。台北市:教育部。
張國財(1982)。最大公因數和最小公倍數的具體操作。國教世紀,18,8-12。
黃寶彰(2003)。六、七年級學童數學學習困難部分之研究。屏東師範學院數理教育研究所碩士論文。
黃國勳(2004)。實踐小學高年級因數教學模組之研究。國立嘉義大學國民教育研究所碩士論文。
黃國勳、劉祥通(2003)。國小五年級學童學習因數教材困難之探討。科學教育研究與發展季刊,30,52-70。
劉祥通、黃國勳(2003)。實踐小學因數教學模組之研究。科教月刊,11(3),235-256。
黃國勳、劉祥通(2005)。撲克牌融入因數教學之創意教學行動研究。教育研究及刊。51(1),95-129。
黃毅英(2005)。最大公因數、最小公倍數要講的是什麼?數學教育,20,70-74。
劉好(1988)。國民小學五年級數學科教材問題之調查研究。台中師院學報,2,277-307。
翰林出版事業股份有限公司編輯委員會(2002)。國民中學數學教師手冊第一冊。台南市:翰林。
謝堅(1993)。實驗課程中因數與倍數教材的設計。國民小學數學科新課程概說,台灣省國民學校教師研習會編印。
韓國棟(1998年10月12日)。數學課…高中小學生最不愛。中時晚報,第六板。
魏麗敏(1996)。國小學生學習動機、數學焦慮與數學成就之研究。國民教育研究集刊。85(4),133-155。
蕭正洋(2004)。國小學童倍數補救教學實施之研究。屏東師範學院數理教育研究所碩士論文。
蕭文強(1992)。爲什麼要學習數學──數學發展史給我們的啟發。台北市:九章。
蘇國樑(1999)。由最大公因數談辯證學習。科學知識,49,37-41。
Heddens, J. W.著、羅鴻翔譯(1979)。小學新數學因數與質數的教學(一)。國教之友,446-450,15-18
Stein, S. K. (1996). Strength in Numbers: Discovering the Joy and Power of Mathematics in Everyday Life.葉偉文譯(1999)。幹嘛學數學?台北市:天下。
Skemp, R. R. (1987). The Psychology of Learning Mathematics.陳澤民譯(1995)。數學學習心理學。台北市:九章。
英文部分
Bartlett, F. C. (1932). Remembering: A Study in Experimental and Social Psychology. Cambridge, England : Cambridge University Press.
Blessing, S. B.& Ross, B. H. (1996). Content Effects in Problem Categorization and Problem Solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(3), 792-810.
Billstein, R., Libeskind, S., Lott, J. W. (1993). A problem solving approach to mathematics (5th). America : Addison Wesley.
Davies, H. B. (1980). On highest common factor and least common multiple in the secondary school mathematics curriculum. International Journal of Mathematical Education in Science and Technology, 11(1), 115-22.
Edwards, F. M. (1987). Geometric Figures Make the LCM Obvious. The Arithmetic Teacher, March, 17-18.
Graviss, T., & Greaver, J. (1992). Extending the number line to make connections with number theory. Mathematics Teacher, 85(6), 418-420.
Gray, E. & Tall, D. (1993). Success and failure in mathematics: the flexible meaning of symbols as process and concept. Mathematics Teaching, 142, 6-10.
Hayes, J. R. (1989). The complete problem solver. Hillsdale, N. J.: Lawrence Erlbaum Associates.
Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations: Meaning and representation in algebra word problems. In P.A. Carpenter & M.A. Just (Eds.), Cognitive process in compregension. Hillsdale, N.J.: Lawrence Erlbanm Associates.
Lake, D. (1999). Helping students to go SOLO: teaching critical numeracy in the biological sciences. Journal of Biological Education, 33(4), 191-198.
Lamb, C. E. & Hutcherson, L.R. (1984). Greatest common factor and least common multiple. Arithmetic Teacher, 31(8), 43-44.
Marshall, S. P. (1995). Schemas in Problem Solving. New York: Cambridge University Press
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: Freeman.
Orhun, N. (2002). Solution of verbal problems using concept of least common multiplier (LCM) and greatest common divisor (GCD) in primary school mathematics and misconceptions. http://math.unipa.it/~grim/SiOrhun.PDF
Pittalis, M., Christou, C., & Papageorgiou, E. (2003). Students’ ability in solving proportional problems. European research in mathematics education III.
Pressley, M. (2000). What should comprehension instruction be the instruction of? In M. L. Kamil, P. B. Mosenthal, P. D. Pearson, & R. Barr, (Eds.), Handbook of Reading Research Volume III (pp.545-561). Mahwah, NJ: Lawrence Erlbaum Associates.
Reimann, P., & Chi, M.T.H. (1989). Human expertise. In K.J. Gilhooly (Eds.), Human and machine problem solving (pp. 161-192) London: Plenum Press.
Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsgurg (Ed.). The development of mathematical thinking (p.153-196). New York: Academic Press.
Rumelhart, D. E., & Ortony, A. (1977). The Representation of Knowledge in Memory. In R. C., Anderson , R. J., Spiro & W. E., Montague (Eds.), Schooling and the Acquisition of Knowledge. Hillsdale, N. J.: Lawrence Erlbaum Associates.
Sgroi, R. J., & Sfroi, L. S. S. (1993). Mathematics for elementary school teachers: problem-solving investigations. Boston: PWS.
Steiner, F. S. (1975). An easy method for determining the greatest common factor and the least common denominator of natural numbers. MATYC Journal, 9(3), 20-22.
Wehman, P., & McLaughlin, P. J. (1981). Program development in special education. New York: McGraw-Hill.