研究生: |
李祥均 Lee, Hsiang-Chun |
---|---|
論文名稱: |
本質與外質電漿光子晶體光學性質之研究 The Optical Properties of Intrinsic and Extrinsic Plasma Photonic Crystal |
指導教授: |
吳謙讓
Wu, Chien-Jang |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 電漿 、光子晶體 、轉移矩陣法 、表面電漿共振 、光子能隙 、缺陷模 |
英文關鍵詞: | plasma, photonic crystal, transfer matrix method, surface polariton resonance, photonic band structure, defect mode |
論文種類: | 學術論文 |
相關次數: | 點閱:234 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討以電漿做為介質的光子晶體相關結構光學性質,主要以轉移矩陣法(Transfer matrix method, TMM)做計算及模擬,論文分三個主題。
主題一討論電磁波於電漿結構中利用表面電漿共振(Surface Polariton Resonance, SPR)的傳輸情形,電漿結構原本因入射電磁波頻率低於電漿頻率而產生屏蔽效應,然而利用表面共振的特性得以進行傳輸,接著探討結構變化對表面電漿共振的影響。
主題二討論可調式外質電漿光子晶體,利用外部電磁場的改變來實現不同的光學性質及缺陷模,其特色在於能在不改變結構的前提下完成各式調變。
主題三利用介電質-電漿光子晶體設計多通道濾波器,探討結構變化對濾波特性的改變,接著討論結構的光子能隙及調變方法。
This thesis is to study the optical properties in some related photonic structures based on the use of plasma as a constituent. We use the transfer matrix method (TMM) to do our calculations and analyses. We shall investigate three topics in our work.
The first topic is to investigate the transmission properties in a plasma-based layered structure. With the operating frequency being lower than the plasma frequency, the resonance transmission can occur by inducing the surface polariton resonance. The structural condition for the resonance transmission will be investigated and discussed.
The second topic is to study the photonic band structure and defect mode in an extrinsic plasma photonic crystal. By changing different parameters, especially the allied magnetic field, we can obtain the tunable optical properties such kind of extrinsic photonic crystal.
In the third topic, we consider a finite plasma-dielectric photonic crystal operated in the negative-permittivity region. We find that a multichannel filter can be obtained. We also investigate how the channels can be shifted as a function of different methods.
[1] Microporous and Mesoporous MaterialsVolume 92, Issues 1–3, 20 June 2006, Pages 227–233
[2] http://www.onwhim.com/gate? mod=article&id=20100720143123
[3] J. D.Joannopoulos, R. D. Meade, J. N. Winn, “Photonic Crystals-Molding the Flow of Light, ” Princeton University Press, 41, William Street, Princeton, New Jersey 08540, p. 6, 1995.
[4] https://nano.nchc.org.tw/v1/photonic/ch3.php
[5] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “FullThree-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science, vol. 289, p. 605, 2002
[6] A. Sharkawy, D. Pustai, S. Shi, D. W. Prather, “High Transmission through Waveguide Bends by Use of Polycrystalline Photonic-Crystal Structures,” Opt. Lett., vol. 28, p. 1197, 2003
[7]http://www.nsl.phys.ncku.edu.tw/index.php?option=module&lang=cht&task=pageinfo&id=29&index=5
[8] W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, Aug. 2003.
[9] J. B. Pendry and D. R. Smith, “The quest for the superlens,” Sci. Amer.,vol. 295, no. 1, pp. 60–67, Jul. 2006.
[10] A. Alù and N. Engheta, “Achieving transparency with plasmonic and
metamaterial coating,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 72, no. 1, p. 016 623, Jul. 2005.
[11] J. B. Pendry, “Photonics: Metamaterials in the sunshine,” Nat. Mater.,vol. 5, no. 8, pp. 599–600, Aug. 2006.
[12] E. Josyula and W. Bailey, “Governing equations for weakly ionized
plasma flowfields of aerospace vehicles,” J. Spacecr. Rockets, vol. 60,
no. 6, pp. 845–857, Jun. 2003.
[13] Natalia Sternberg and Andrei I. “Smolyakov, Resonant Transmission of Electromagnetic Waves in Multilayer Dense-Plasma Structures, ” IEEE Transaction on Plasma Science, vol. 37, no. 7, July 2009
[14] E. Fourkal, I. Velchev, C.-M. Ma, and A. Smolyakov, “Evanescent wave interference and total transparency of warm high-density plasma slab,”Phys. Plasmas, vol. 13, no. 9, pp. 092 113-1–092 113-9, Sep. 2006.
[15] R. Dragila, B. Lutherdavies, and S. Vukovic, “High transparency of
classically opaque metallic films,” Phys. Rev. Lett., vol. 55, no. 10,
pp. 1117–1120, Sep. 1985.
[16] Chun Xu, Dezhuan Han, Xin Wang, Xiaohan Liu, and Jian Zib,
“Extrinsic photonic crystals: Photonic band structure calculations of a doped semiconductor under a magnetic field,” Applied Physics Letters 90, 061112 2007.
[17] Tzu-Chyang King, Chao-Chin Wang, Wen-Kai Kuo, and Chien-Jang Wu, “Analysis of Effective Plasma Frequency in a Magnetized Extrinsic Photonic Crystal,”IEEE Photonics Journal Volume 5, Number 6, December 2013
[18] Xiang-kun Kong, Shao-bin Liu,a Hai-feng Zhang, and Chun-zao Li, “A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma,” Physics of Plasmas 17, 103506 2010
[19] Limei Qi, Ziqiang Yang, Feng Lan, Xi Gao, and Zongjun Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Physics of Plasmas 17, 042501 2010
[20] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, May 1987.
[21] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486–2489, Jun. 1987.
[22] A. R. McGurn, “Intrinsic localized modes in nonlinear photonic crystal waveguides,” Phys. Lett. A, vol. 251, no. 5, pp. 322–335, Feb. 1999.
[23] M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett., vol. 81, no. 15, pp. 2680–2682,Oct. 2002.
[24] H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 mu m,”Appl. Phys. Lett., vol. 81, no. 24, pp. 4502–4504, Dec. 2002.
[25] A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue,
A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state
peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev.
B, Condens. Matter, vol. 74, no. 4, p. 045128, Jul. 2006.
[26] Y. Chen, “Omnidirectional and independently tunable defect modes
in fractal photonic crystals containing single-negative materials,” Appl.
Phys. B, Lasers Opt., vol. 95, no. 4, pp. 757–761, Jun. 2009.
[27] Y. Chen, Y. Wang, C. W. Leung, M. Hu, and H. L. W. Chan, “Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials,” Phys. Lett. A, vol. 375, no. 24, pp. 2465–2470, Jun. 2011.
[28] H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, “Properties of
one-dimensional photonic crystals containing single-negative materials,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 69,
no. 6, p. 066607, Jun. 2004.
[29] X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett.,vol. 80, no. 23, pp. 4291–4293, Jun. 2002.
[30] H. Hojo and A. Mase, “Dispersion relation of electromagnetic waves
in one-dimensional plasma photonic crystals,” J. Plasma Fusion Res.,
vol. 80, no. 2, pp. 89–90, 2004.
[31] Tzu-ChyangKing , Chih-ChiangYang , Pei-HungHsieh , Tsung-WenChang , Chien-Jang Wu, “Analysis of tunable photonic band structure in an extrinsic plasma photonic crystal,” Physica E., Volume 67, March 2015, Pages 7–11
[32] Chun-zao Li, Shao-bin Liu, Xiang-kun Kong, Hai-feng Zhang, Bo-rui Bian, and Xue-yong Zhang , “A Novel Comb-Like Plasma Photonic Crystal Filter in the Presence of Evanescent Wave,” IEEE Transaction on Plasma Science, vol. 39, no. 10, October 2011
[33] V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas.Oxford, U.K.: Pergamon, 1970.
[34] P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Amer., vol. 67, no. 4,pp. 423–438, Apr. 1977.