簡易檢索 / 詳目顯示

研究生: 何佳燕
Chai-Yen Ho
論文名稱: 探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式之影響
Investigating Effects of The Use of Material Particle Concepts on Students’ Learning Achievements and Mental Models on Heat and Temperature
指導教授: 邱美虹
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 粒子概念微觀心智模式溫度概念改變本體論
論文種類: 學術論文
相關次數: 點閱:301下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 很多研究指出,微觀的粒子世界對學生而言是困難且難以學習的(Novik & Nassusbaum, 1981; Nassusbaum & Novick, 1982; Nussbaum, 1985; Andersson, 1990; de Vos, 1996),但是物質的粒子理論(The particle theory of matter)早在1960年代就是基礎科學教育研究焦點的一個主題,並被National Science Teachers Association列為課程中必須建立的重要概念(Schmedemann, 1970),學生必須具備這些基本概念方有助於理解其他的化學概念。
    本研究針對現行國二理化課程中的「溫度與熱」單元,設計了實施微觀教學的「粒子+微觀組」、以現行理化課本的巨觀教材為主的「巨觀組」,並增加了一組「粒子+巨觀組」,主要方式是實施粒子教學但實施溫度與熱的巨觀教學,藉以探討粒子概念對於學生於巨觀教學下的影響。
    本研究之研究結果如下﹕
    1. 在概念的層面上,微觀教學的教學成效優於巨觀教學,但在以計算為主的解題上,粒子概念對巨觀教學下的學生產生負面的影響。
    2. 與巨觀教學相比,微觀教學後,學生之粒子概念有顯著的提升,而接受巨觀教學的學生,其粒子概念並未產生顯著的變化。在面對其他粒子相關的科學現象時,巨觀教學與微觀教學組的學生,皆偏向以巨觀觀點解題,但接受微觀教學的學生較多人以粒子觀點解題,且成功解題的比例很高。
    3. 與巨觀教學相比,微觀教學下學生所產生的「水加熱系統」、「比熱」以及「熱平衡」心智模式之本體屬性較多屬於CBI屬性,且較多學生具有科學模式。且在微觀教學下,學生具有的「CBI」屬性的「熱平衡」心智模式較易維持。
    4. 微觀教學之教學(呈現)模型較能有效使學生建立與科學模型屬性相同的心智模式。
    綜合以上所述,溫度與熱的微觀教學對於提升學生的學習成就、建立與科學模式相同屬性的心智模式以及對粒子相關的科學現象推理解釋均有顯著的幫助。

    The particle theory of matter has been a focal point in basic science education since 1960, and was made into a list of important and essence concepts in curricula (Schmendemann, 1970), But many studies pointed out that microscopic particle concepts are very difficult and hard to learn for students (Novik & Nassusbaum, 1981; Nassusbaum & Novick, 1982; Nussbaum, 1985; Andersson, 1990; de Vos, 1996).
    This research aimed at investigating eighth graders conceptions of “temperature and heat” and their changes via learning with different instrument materials. There are one control group (G1), and two treatment groups (namely G2 using materials in particle concepts and “heat and temperature” concepts described at macroscopic level, and G3 using particle concepts and “heat and temperature” concepts described at microscopic level).
    Four results of this study are as follows:
    First, G3 outperforms G1 and G2 in conceptual learning, but particular concepts prevent students from learning in heat and temperature concepts.
    Second, students in G3 made significant progress in particle concepts, but those in G2 did not. In order to solve related particular scientific phenomenon, Majority of students in three groups tended to solve them in macroscopic view. Among three groups, G3 has more students to use particular concepts to solve them.
    Third, comparing with macroscopic instruction, more students in G3 had CBI and scientific “water heating system”, “specific heat” and “heat equilibrium” mental models. After instruction, mental models of heat equilibrium of students in G3 were easier to sustain than those in G1 and G2.
    Fourth, expressed models used in G3 could help students construct mental models, in which the attributes in students’ mantel models were similar to scientific models.
    Microscopic instruction in “temperature and heat” concepts significantly helps students improve learning achievement, construct mental models with similar attributes as scientific models, and provide reasonable arguments for related scientific phenomenon.

    第一章 緒論……………………………………………….1 第一節 研究動機…………………………………………2 第二節 研究目的…………………………………………3 第三節 研究問題…………………………………………3 第四節 名詞釋義…………………………………………5 第五節 研究範圍與限制…………………………………6 第二章 文獻探討…………………………………………7 第一節 概念改變…………………………………………7 第二節 心智模式與教學模型……………………………13 第三節 學生溫度與熱概念研究…………………………21 第四節 粒子概念…………………………………………27 第三章 研究方法…………………………………………32 第一節 研究設計……………………………………………32 第二節 研究對象…………………………………………33 第三節 研究工具…………………………………………33 第四節 研究步驟…………………………………………39 第五節 資料處理與分析…………………………………41 第四章 研究結果與討論……………………………………46 第一節 微觀教材於溫度與熱概念成效之比較…………46 第二節 微觀教學對各概念主題的教學成效分析………49 第三節 微觀教學對粒子概念學習成效之影響…………63 第四節 學生溫度與熱之心智模式………………………67 第五節 微觀教學對學生的後續影響……………………124 第六節 心智模式之本體屬性的延宕變化………………127 第五章 結論與建議………………………………………142 第一節 結論………………………………………………142 第二節 建議………………………………………………148 參考文獻……………………………………………………150 中文部分……………………………………………………………150 英文部分……………………………………………………………151 附錄…………………………………………………………156 附錄一 粒子教材…………………………………………………156 巨觀教材—熱量單元……………………………………157 巨觀教材—比熱單元……………………………………159 巨觀教材—熱平衡單元…………………………………161 微觀教材—熱量單元……………………………………162 微觀教材—比熱單元……………………………………165 微觀教材—熱平衡單元…………………………………167 附錄二 溫度與熱概念評量試題…………………………………168 附錄三 溫度與熱開放性問題……………………………………172 附錄四 粒子試題…………………………………………………173 附錄五 延宕測驗試題……………………………………………175

    中文部分
    任宗浩 (2001)﹕心智模式動態變化之研究-物理現象的觀察與詮釋。科學教育學刊,9(2),147-168。
    林振霖 (1992)﹕我國學生分子概念發展與診斷教學的研究﹕我國學生分子概念的理解與解題之間的關係的研究。彰化師範大學學報,3,407-478。
    邱美虹 (2000):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    邱美虹、劉嘉茹、周金城和梁家祺 (1999):認知師徒制對學生化學概念改變的影響。論文發表於中華民國第十五屆科學教育學術研討會。彰化市﹕國立彰化師範大學。
    邱美虹和翁雪琴 (1995)﹕國三學生「四季成因」之心智模式與推理歷程之探討。科學教育學刊,3(1),23-68。
    陳文典與劉德生 (1994)﹕國小學童對熱與溫度概念的認知,科學教育學刊,2(2),77-113。
    郭重吉與吳鐵雄 (1990)﹕利用晤談方式探查國中學生對重要物理概念的另有架構之研究 (Ⅱ)。國科會專題研究,NSC-80-0111-S-017-08-D。
    郭重吉、陳錦章、張惠博 (1985)﹕協助國中學生學習正確物理概念的CAI教材軟體之設計實例─物質的分子模型,教育學院學報, 10,219-233。
    黃曼麗 (1980)﹕國中二、三年級學生具體操作及形式操作之推理能力研究,教育學院學報,5。
    黃湘武、黃寶鈿 (1986):學生空氣概念﹕粒子性質及動力平衡。七十四年度科學教育學術研討會論文彙編。
    黃寶鈿和黃湘武 (1989):學生之比熱及熱平衡概念發展的研究。中華民國第五屆科學教育學術研討會,209-232。
    蔡聰輝 (2001)﹕由心智模式探討學生引導之類比教學對國二學生溫度與熱概念學習之研究。國立台灣大學科學教育研究所碩士論文。(未出版)。
    謝秀月 (1995)﹕小學、師院學生熱與溫度概念的另有架構。國立彰化師範大學科學教育研究所碩士論文。(未出版)
    英文部分
    Albert, E. (1978). Development of the concept of heat in children. Science Education, 62(3), 389-399.
    Arnold, M., & Millar, R. (1994). Children’s and lay adult’s views about thermal equilibrium. International Journal of Science Education, 16, 405-419.
    Bishop, J. E. (1978). Developing Students' Spatial Ability. Science Teacher, 45(8), 20-23.
    Brown, A.L., Kane, M.J., & Echols, K. (1986). Young Children’s mental models determine analogical transfer across problems with a common goal structure. Cognitive Development, 1(2), 103-22.
    Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education, 105-122. Dordrecht, Holland: Kluwer.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples for learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota Studies in the Philosophy of Science, 129-186. Minneapolis, MN: University of Minnesota Press.
    Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209-234). Washington, DC: American Psychological Association.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science conception. Learning and instruction, 4, 27-43.
    Clough, E. E., & Driver, R. (1985). Secondary students’ conceptions of the conduction of heat: Bringing together scientific and personal views. Physical Education, 20, 176-182.
    di Sessa, A. A. (1998). Knowledge in pieces. In G. Forman and P. B. Pufall (Eds.), Constructivism in the computer age. Hilland, NJ: Erlbaum Associates.
    Driver, R., Asoko, H., Leach, J., Mortimer, E. & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23 (7),5-12.
    Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2), 221-230.
    Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2),221-230.
    Erickson, G. L. (1980). Children’s viewpoints of heat: A second look. Science Education, 64(3), 323-336.
    Erickson, G. L. (1985). Heat and Temperature: Part A: A overview of pupils ideas. In S. Driver, E. Guesne and A. Tiberghien. Children’s Ideas in Science. Milton Keynes Open University Press.
    Ferrari, M. & Chi, M. T. H. (1988). The Nature of Naive Explanations of Natural Selection. International Journal of Science Education, 20(10), 1231-56.
    Gilbert J. K., Boulter, C. J., Elmer, R. (2000), Positioning Models in Science Education and in Design and Technology Education. In: J. K. Gilbert and C. J. Boulter (eds.). Developing Models in Science Education, 3-18. Dordrecht; Kluwer.
    Gilbert, B. (1998). Models in Explanations, Part 2: Whose Voice? Whose Ears? International Journal of Science Education, 20(2), 187-203.
    Gilbert, J. & Priest, M. (1997). Models and Discourse: A Primary School Science Class Visit to a Museum. Science Education 81(6) 749-62.
    Gilbert, J. & Priest, M. (2000). History and Philosophy of Science through Models: Some Challenges in the Case of "The Atom". International Journal of Science Education, 22(9), 993-1009.
    Harison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
    Hewson, M. G. A’B., & Hamlyn, D. (1985). Cultural metaphors: some implications or science education. Anthropology and Education Quarterly, 16(1), 31-46.
    Holford, D. G. & Kempa, R. F. (1970). The Effectiveness of Stereoscopic Viewing in the Learning of Spatial Relationships in Structural Chemistry. Journal of research in Science Teaching , 7(3), 265-270.
    Hollon, R. E., & Anderson, C. W. (1986). Heat and temperature: A teaching module. Occasional paper No: 93. Eric Document No ED273453.
    J. J. Mintzes, J. H. Wandersee, J. & D. Novak (Eds.). (1998). Teaching Science for Understanding: A Human Constructivist View, 186-187. San Diego, CA : Academic Press.
    Johnson, P.M. (1995). The development of Children’s concept of a substance. Unpublished Ph. D. dissentation, University of Durham, UK.
    Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.
    Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science, 469-499. Cambridge, MA: MIT Press.
    Johnson-Laird, P. N. (1993). Human and machine thinking. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Johnson-Laird, P. N. (1999). Formal rules versus mental models in reasoning. In R. J. Sternberg (Ed.). The nature of cognition, 586-624. Cambridge, MA: MIT Press.
    Keil, F. (1979). Concepts, kinds and cognitive development. Cambridge, MA: MIT Press.
    Keil, F. (1979). The Development of the Young Child's Ability to Anticipate the Outcomes of Simple Causal Events. Child Development, 50(2), 455-62.
    Kesidou, S., & Duit, R. (1993). Students’ conceptions of the second law of thermodynamics-An interpretive study. Journal of research in Science Teaching, 30(1), 85-106.
    Kindfield, A. C. H., (1994). Understanding a Basic Biological Process: Expert and Novice Models of Science. Science Education, 78(3), 255-283.
    Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos and A. Musgrave, Eds., Criticism and the growth and the knowledge, 91-195. Cambridge: Cambridge University press.
    Linn, M. C. (1987). An apple a day. Science and Children, 25(2), 15-18.
    Linn, M.C., & Songer, N. B. (1991). Teaching Thermodynamics to Middle School Students: What Are Appropriate Cognitive Demands? Journal of Research in Science Teaching, 28(10), 885-918.
    Medin, D. L. & Smith, E. E., (1981). Strategies and Classification Learning. Human Learning and Memory. Journal of Experimental Psychology, 7(4), 241-253.
    Medin, D. L., & Smith, E. E. (1984). Concepts and concept formation. Annual Review of Psychology, 35, 113-138.
    Michael R. & Peter R., (Eds.) (1998), Reasoning with Multiple Representations When Acquiring the Particulate Model of Matter. 1-28.
    Millar, R. (1990). Making sense: What use are particle ideas to children? In P. L. Lijnse, P. Licht, W. de Voss, & A. J. Waarlo, (Eds.). Relating macroscopic phenomena to microscopic particles. Utrecht, The Netherlands: University of Utrecht.
    Norland et al. (1974). A study of Levels of Concrete and Formal Reasoning Ability in Disadvantages Junior and Senior High School Science Students. Science Education, 58(4), 569-574.
    Norman, D. A. (1983). Some observation on mental models. In D. Gentner & A. L. Stevens (Eds.). Mentl Models, 7-14. Hillsdale, NJ: Erlbaum.
    Novick & Nussbaum. (1978). Using Interviews to Probe Understanding. Science Teacher, 45(8), 29-30.
    Osborn, Michael. (1996). The Enduring Heart of the Public Speaking Course. Paper presented at the Annual Meeting of the Speech Communication Association (82nd, San Diego, CA, November 23-26, 1996).
    Piaget, J., & Inhelder, B.,(1969). The Psychology of the Child (H. Weaver, trans.), New York, Basic Book, Inc.
    Reif, F. (1987). Instructional design, cognition, and technology: Applications to the teaching for scientific concepts. Journal of Research in Science Teaching, 24(4), 309-324.
    Renner, J. W. et al. (1972). Teaching Science in the Secondary School. New York, Harper and Row.
    Simon, H. A. (1957). Administrative behavior (2nd ed.). Totowa, NJ: Littlefield, Adams.
    Slotta, J.D., Chi, M.T.H., & Joran, E. (1995). Assessing students’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373-400.
    Songer, N. B. & Linn, M. C. (1991). How do students’ views of science inference knowledge integration? Journal of Research in Science Teaching, 28, 761-784.
    Stavy, R., & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64(5), 679-692.
    Stevens, A. L., & Collins, A. (1980). Multiple conceptual models of a complex system. In R. E. Snow, P. Federico, & W. E. Montague (Eds.), Aptitude, learning and instruction (Vol. 2).Hillsdale, NJ: Erlbaum.
    Stewart, J. & Hafner, R. (1991). Extending the Conception of “Problems” in Problem-Solving Research. Science Education, 75(1), 105-120.
    Strike, K. A. & Posner, G. J. (1992). A revisionist theory of conceptual change .In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, Cognitive psychology, and educational theory and practice. Albany, NY: SUNY press, 147-176.
    Tiberghien, A. (1980). Modes and conditions of learning-an examples: the learning of aspects of the concepts of heat. In W. F. Archenhold et al. (Eds.). Cognitive Development Research in Science and Mathematics, 288-309.
    Van der Veer, G. C., Kok, E. and Bajo, M. T. (1999). Conceptualizing Mental Representations of Mechanics﹕A Method to Investigate Representational Change. In: D. Kayser & S. Vosniadou. Modelling changes in understanding: case studies in physical reasoning, 43-47. Pergamon.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instructing, 4, 45-69.
    Wiser, M. (1986). The differentiation of heat and temperature: an evaluation of the effect of microcomputer teaching on students’ misconceptions. ERIC Document No: ED291 596.
    Wiser, M., & Kipman, D. (1988). The differentiation of heat and temperature: an evolution of effect of microcomputer models on students’ misconceptions. ERIC Document No: ED 303367.
    Wiser, M., (1988). Can models foster conceptual change? The case of heat and temperature. ERIC Document No: ED 303365.

    QR CODE