簡易檢索 / 詳目顯示

研究生: 詹堯舜
Zhan, Yao-Shun
論文名稱: 利用 DFT+U 理論探討乙烷氧化脫氫反應在 MoO3, Mo-V, Mo-V-W 催化劑上的反應機構
DFT+U Study of Mechanistic of Ethane Dehydrogenation on Molybdenum trioxide, Mo-V and Mo-V-W mixing catalysts
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 乙烷氧化脫氫計算化學表面化學三氧化鉬表面催化催化反應催化乙烯
英文關鍵詞: Oxidative Dehydrogenation, surface chemical, Surface chemistry, Ethane, Molybdenum trioxide, MoO3, Ethene
DOI URL: https://doi.org/10.6345/NTNU202204370
論文種類: 學術論文
相關次數: 點閱:139下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相比於傳統方法,乙烷轉化乙烯技術具有高產率低耗能的優點。

    原料乙烷可由富含乙烷的天然氣油田,或石化工業的副產物中中提出。

    半導體表面對於烴類的催化反應已被廣泛研究,如三氧化鉬和五氧化

    二釩的半導體表面。Mo-V-O 基底催化劑已被開發成 ODH(氧化脫氫)

    反應的催化劑。在一般化學生產工業中,乙烯主要由長碳鍊原料蒸汽

    裂解製成。而由乙烷的天然氣脫氫可以更簡單的得到乙烯的直接產

    Mohammed Al-Hazmi & YongMan Choi 等人製造出 Mo-V-Mn-W

    催化劑,以進行短接觸時間的乙烷氧化脫氫反應。隨著不同的鎢荷載

    量,發現對於乙烯有不同的選擇性。

    本研究利用第一性原理計算,探討乙烷在純三氧化鉬表面的脫氫

    反應機制,並透過表面無共吸附氫模型,比較三氧化鉬摻雜不同比例

    的V&W,催化乙烷的脫氫反應機構。並藉由尋找可能的反應的機構,

    預測乙烷轉化過程中可能的產物,以及找出最適合進行乙烷催化乙烯

    的催化劑表面。

    Process of ethane conversion ethylene compared to traditional methods have advantage of having a high yield and low energy cost. Ethane can be isolated from natural gas, and as a byproduct of petroleum refining. The semiconductor surface of the hydrocarbon reaction catalysts have been widely studied, such as MoO3 & V2O5 semiconductor surfaces. The Mo–V–O-based catalysts had be developed into catalyst of ODH(oxidative dehydrogenation) reaction. As the product generally & wide variety of the chemical industry, ethylene mostly made of steam-cracking. By ethane in the natural gas, it dehydrogenation can get direct product of ethylene.
    Mohammed Al-Hazmi & YongMan Choi et al. create Mo-V-Mn-W catalysts for ethane oxidative dehydrogenation in short contact time reaction. With varying tungsten loadings, found in different selectivity to ethylene.
    This study uses the first-principles calculations to explore ethane dehydrogenation reaction mechanism in a pure MoO3 surface, and compare the ethane dehydrogenation reaction mechanisms on different transition metal catalysts doping with V & W. By looking for possible reaction mechanism. We prediction probable product of ethane conversion process, and identify the most suitable catalyst surface for ethane transform ethylene.

    中文摘要 3 Abstract 5 第一章 緒論 6 1-1 前言 6 1-2 表面上的化學反應機構 8 1-3 氧化脫氫反應(Oxidative Dehydrogenation) 10 1-4 部分氧化反應 (Partial oxidation) 11 1-5 三氧化鉬 (Molybdenum trioxide)催化劑 12 1-6 研究目標 14 第二章 理論計算方法 16 2-1 量子力學 16 2-2 計算化學的理論與方法 19 2-2-1 分子力學 (Molecular Mechanics) 19 2-2-2 初始法 (ab initio) 20 2-2-3 半經驗法 (Semi-empirical) 21 2-2-4 密度泛函理論 (Density Functional Theory) 22 2-2-5 局域密度近似(Local density function approximation) 24 2-2-6廣義梯度近似 (Generalized gradient approximation, GGA) 24 2-2-7贗勢 (pseudopotential)&平面波基底 (plane-wave basis set) 25 2-2-8 倒空間與布里淵區 27 2-2-9 本篇論文的計算方法 28 第三章 結果與討論 30 3-1 Bulk和MoO3 (010)表面的結構 30 3-1-1 MoO3晶格結構 30 3-1-2 Bilayer層數對於表面結構與吸附物選擇性的探討 32 3-1-3 表面模型中的Mo-O鍵長 37 3-1-4 缺陷與氧空位 39 3-1-5 GGA與GGA+U方法對於產物的選擇性 40 3-2 DFT計算MoO3催化乙烷氧化脫氫的反應機構 42 3-2-1 乙烷的化學吸附 42 3-2-2 C2H5O-的脫氫反應&氫原子在表面上的轉移 43 3-3 CH2CH2O-脫附&C2H4異構物的生成 45 3-4 環氧乙烷&乙醛的脫附 47 3-5 乙烷脫氫反應在MoO3催化劑上的反應機構 47 3-6 Mo-V 混和催化劑對於反應性的探討 52 3-6-1 MoO3表面參雜V的模式 52 3-6-2 乙烷脫氫在Mo-V催化劑上的反應機構 55 3-7 Mo-V-W 混和表面對於反應性的探討 58 3-7-1 Mo-V混和表面上W的參雜模式 58 3-7-2 乙烷脫氫反應在Mo-V-W催化劑上的反應機構 60 3-8 比較在不同催化劑表面上乙烷脫氫反應的選擇性 62 3-9 探討Mo、V、W在表面上的電荷分布變化 64 3-9-1 表面正負電荷分佈的改變 64 3-9-2 金屬離子 & Ot 之布居電荷分析 65 第四章 結論 68 第五章 參考文獻 69

    [1] Kniel, Ludwig; Winter, Olaf; Stork, Karl (1980). Ethylene, keystone to the petrochemical industry. New York: M. Dekker.
    [2] 劉雪斌,朱海歐,葛慶傑. 烴類選擇氧化制低碳烯烴的研究進展[J]. 化學進展, 2004,16(6): 900-909.
    [3] Hodnet B K. Heterogeneous catalytic oxidation: funda-mental and technological aspects of the selective and to-tal oxidation of organic compounds[M]. New York: John Wiley and Sons Inc, 2000.
    [4] Thorsteinson E M , Wilson T P , Young F G , et al . J . Catal . , 1978 , 52 :116 — 132
    [5] Ezekiel O. Odebumi, David F. Ollis . Journal of cataly, ysis 80, 56-64(1983)
    [6] J. Haber and E. Lalik . Catal. Today, 1997, 33, 119.
    [7] Eleni Heracleous , Angeliki A. Lemonidou . Applied Catalysis A: General 264 (2004) 73–80
    [8] K. Ruth , R. Burch , Kieffer R. J . Catal . , 1998 , 175 : 27 — 39
    [9] G. Kresse and J. Hafner, Physical R eView B, 1993, 47, 558-561.
    [10] G. Kresse and J. Furthmuller, Physical R eView B, 1996, 54, 11169-11186.
    [11] L. Wang, T. Maxisch, & G. Ceder. Oxidation energies of transition metal oxides within the GGA+U framework. Physical R eView B. 2006, 73, 195107,
    [12] J. P. Perdew, K. Burke and M. Ernzerhof, Physical R eView Letters, 1996, 77, 3865-3868.
    [13] P. E. Blochl, Physical R eView B, 1994, 50, 17953-17979.
    [14] R. Coquet and D. J. Willock, Physical Chemistry Chemical Physics, 2005, 7, 3819-3828
    [15] R.-P Blum, H. Niehus, C. Hucho, R. Fortrie, Surface Metal-Insulator Transition on a Vanadium Pentoxide (001) Single Crystal, Phys R eV Lett. 99. 226103 (2007)
    [16] A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, and G. Ceder, A high-throughput infrastructure for density functional theory calculations, Computational Materials Science, vol. 50, 2011, pp. 2295-2310. M. Methfessel and A. T. Paxton
    [17] M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Re V. B 40, 3616 – Published 15 August 1989
    [18] Monkhorst, M.; Pack, J. D. Phys. Re V. B1976, 13, 5188−5192.
    [19] Jó nsson, H.; Mills, G.; Jacobsen, K. W. InClassical and Quantum Dynamics in Condensed Phase Simulations; Berne, B. J., Ciccotti, D. F., Eds.; World Scientific: Singapore, 1998; p385.
    [20] Lei, Y.-H. and Chen, Z.-X. (2012) ‘DFT+U study of properties of MoO3 and hydrogen Adsorption on MoO3 (010)’, The Journal of Physical Chemistry C, 116(49), pp. 25757–25764. doi: 10.1021/jp304122n.
    [21] L. Kihlborg, Ark. Kemi, 1963, 21, 357–364.!.
    [22] Donghai Mei, Ayman M. Karim, and Yong Wang, J. Phys. Chem. C 2011, 115, 8155–8164
    [23] M. Chen, U. V. Waghmare, C. M. Friend and Efthimios Kaxiras, journal of chemical physics 109, 16 (1998)
    [24] Ming Yang, Bo Han, and Hansong Cheng, J. Phys. Chem. C 2012, 116, 24630−24638
    [25] Rudy Coquet, David J Willock, "The (010) surface of alpha-MoO3, a DFT + U study", Phys Chem Chem Phys 2005 Nov 14;7(22):3819-28. Epub 2005 Sep 14.
    [26] Robert E. Kenson , M. Lapkin J. Phys. Chem., 1970, 74 (7), pp 1493–1502
    [27] T. Odedairo, SABIC Technology Center, Riyadh, 11551, Saudi ArabiaG.
    [28] Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density,Comput. Mater. Sci. 36, 254-360 (2006).
    [29] Bardziński, Piotr J. (2011). "Determination of the electronic band structure of the rutile polymorph of TiO2: a quantum chemical approach". Materials Science-Poland 29 (3): 227–228.
    [30] Thorsteinson E M , Wilson T P , Young F G , et al . J . Catal . , 1978 , 52 :116 — 132
    [31] X. Lin, C. A. Hoel, W. M. H. Sachtler, K. R. Poeppelmeier, and E. Weitz, "Oxidative dehydrogenation (ODH) of ethane with O2 as oxidant on selected transition metal-loaded zeolites", Journal of Catalysis, vol. 265, no. 1, pp. 54–62, 2009.
    [32] K.-I. Nakamura, T. Miyake, T. Konishi, T. Suzuki, J. Mol. Catal. A 260 (2006) 144.
    [33] Lewars, E. G. Computational Chemistry Introduction to the Theory and Applications; 2th ed. Peterborough Ontario Canada, 2011.
    [34] Bowker, M., Carley, A.F. & House, M. Catal Lett (2008) 120: 34. doi:10.1007/s10562-007-9255-x
    [35] Fierro, F. (2005) Metal oxides: Chemistry and applications. Edited by J. L. G. Fierro and Heinz Heinemann. United States: Taylor & Francis.
    [36] P. Mars, D. W. van Krevelen, Chem. Eng. Sci. (1954), 3, 41
    [37] Doornkamp, C. and Ponec, V. (2000) ‘The universal character of the mars and Van Krevelen mechanism’, Journal of Molecular Catalysis A: Chemical, 162(1-2), pp. 19–32. doi: 10.1016/s1381-1169(00)00319-8.

    [38] Fritz-Haber-Institut and Mahdi, W. (no date) Archives: G. Ertl biographic data / department of physical chemistry, FHI Berlin. Available at: http://www.fhi-berlin.mpg.de/pc/ertl/Galerie_E/Ertl_galerie.html (Accessed: 20 July 2016).
    [39] Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) ‘A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules’, Journal of the American Chemical Society, 117(19), pp. 5179–5197. doi: 10.1021/ja00124a002.
    [40] Moller, C.;Plesset, M.S. phys.rev 1934,46,618
    [41] Binkley, J. s.; Pople, J.A. Int. J. Quant. Chem. 1975,9,229
    [42] Shavitt, I. Mol. phys. 1998, 94, 3.
    [43] Crawford, T.D.; III, H. F. S Rev. Comput. Chem 2000, 14, 33.
    [44] R. Pariser and R. Parr, Journal of Chemical Physics, 21, 466, 767, (1953)
    [45] J. A. Pople, Transactions of the Faraday Society, 49, 1375, (1953)
    [46] J. A. Pople , G. A. S. J. Chem. Phys. 1966, 44, 3289
    [47] Bingham, R.C., Dewar, M.J.S. and Lo, D.H. (1975) ‘Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method’, Journal of the American Chemical Society, 97(6), pp. 1285–1293. doi: 10.1021/ja00839a001.
    [48] Dewar, Michael J. S.; Thiel, Walter (1977). "Ground states of molecules. 38. The MNDO method. Approximations and parameters". Journal of the American Chemical Society 99 (15): 4899.

    [49] Michael J. S. Dewar; Eve G. Zoebisch; Eamonn F. Healy; James J. P. Stewart (1985). "Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions". Journal of the American Chemical Society (ACS Publications) 107 (13): 3902–3909.

    [50] James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods I. Method". The Journal of Computational Chemistry (Wiley InterScience) 10 (2): 209–220.
    [51] Holder, A. J.; II, R. D. D.;Jie, C. Tetrahedron 1994, 50, 627
    [52] Dewar, M. J. S.; Jie, C.; Yu, J. Tetrahedron 1993, 49, 5003
    [53] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    [54] Herbschleb and Thaddeus, C. (2011b) ReactorSTM: Imaging catalysts under realistic conditions. Available at: https://openaccess.leidenuniv.nl/handle/1887/1
    7620 (Accessed: 21 July 2016). In-text citations: (Herbschleb and Thaddeus, 2011b)
    [55] R.L. Smith and G.S. Rohrer, J. of Solid State Chem. 124 (1996) 104.
    [56] Hamann, D. R.; Schlüter, M.; Chiang, C. (1979-11-12). "Norm-Conserving Pseudopotentials". Physical Review Letters 43 (20): 1494–1497. doi:10.1103/PhysRevLett.43.1494
    [57] Hua, X.; Chen, X.; Goddard, W. A., Physical Review B 1997, 55 (24), 16103-16109.

    下載圖示
    QR CODE