簡易檢索 / 詳目顯示

研究生: 陳右諭
Chen Yo Yu
論文名稱: 砷化鎵/砷化氮鎵 量子井的調制光譜研究
Photoreflectance Research of GaAs/GaNAs Quantum Wells Structure
指導教授: 陸健榮
Lu, Chien-Rong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 85
中文關鍵詞: 量子井砷化氮鎵光調制反射光譜有效質量能帶落差
英文關鍵詞: Quantum Well, GaNAs, Photoreflectance, effective mass, band offsets
論文種類: 學術論文
相關次數: 點閱:282下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    我們以光調制反射光譜(PR)來研究由MOCVD長成的GaAs/GaNxAs1-x 多量子井結構(MQW)。實驗結果發現能量在GaAs能隙以上的譜形,有兩組FKO振盪譜形,而能量在GaAs能隙以下的譜形是GaNxAs1-x能隙與GaAs/GaNxAs1-x量子井躍遷所產生的訊號,藉由分析FKO振盪譜形,可以推算樣品的內建電場。
    當GaNxAs1-x /GaAs 多量子井能帶的排列方式為type-Ⅰ型且能帶落差Qc:Qv=8.8:1.2時,最能符合譜形的躍遷訊號,此外,藉由量子井躍遷的能階,來分析在不同N含量下,GaNxAs1-x電子的有效質量:當N含量分別為0.9% 與4%時,GaNxAs1-x電子的有效質量為0.08m0與0.41m0。

    Photoreflectance Research of GaAs/GaNxAs1-x
    Quantum Wells Structure
    ABSTRACT
    We have studied the GaAs /GaNxAs1-x multiple quantum wells grown by Metal-Organic Chemical Vapor Deposition using photoreflectance at various temperatures and nitrogen contents . The photoreflectance spectral features above the energy gap of GaAs include two sets of Franz-Keldish oscillations ,and features
    below the energy gap of GaAs are the GaNAs energy gap transtion and the quantum well excitionic interband transtions . By the analysis of the line shapes of the Franz-Keldish oscillations , we obtained the built-in electric fields of the sample .
    The interband transition energies for multiple quantum wells with different nitrogen contents and well widths can be well fitted if a type -Ⅰband line up of GaAs/GaNxAs1-x multiple quantum wells and band offsets with Qc:Qv=8.8:1.2 are assumed . Furthermore , we are able to determine the electron effective mass for GaNxAs1-x as a function of x . The electron effective masses are =0.08mo and 0.41mo with N composition of 0.9% and 4.0% ,respectively.

    目錄 摘要……………………………………………………………………Ⅰ 目錄……………………………………………………………………Ⅱ 圖目錄…………………………………………………………………Ⅳ 第一章 簡介…………………………………………………………1 第二章 調制原理 2-1 電子躍遷理論…………………………………………………3 2-2 介電函數………………………………………………………6 2-3 調制光譜的基本原理………………………………………..13 2-4 光調制反射的機制…………………………………………..16 2-5 Franz-Keldysh 效應…………………………………………18 第三章 實驗與結果 3-1 樣品結構……………………………………………………..24 3-2 光調制實驗及實驗儀器裝置………………………………..25 3-3調制光譜的實驗結果…………………………………………. 28 第四章 內建電場的分析 4-1內建電場的理論計算…………………………………………..30 4-2光壓效應………………………………………………………..31 4-3譜型的擬合…………………………………………….………33 第五章 量子井躍遷譜型的分析 5-1 前言…………………………………………………………35 5-2 GaNxGa1-x 的能隙…………………………………………..36 5-3 GaNxGa1-x 有效質量………………………………………..41 5-4量子能階的計算與分析………………………………………..46 第六章 結論與展望…………………………………………………..51

    參考文獻
    [1] Appl. phys. Lett. Vol. 75 , 4. 26 July 1999
    [2] Jpn. J. Appl. Phys. 31 (1992) Pt. 2,No.7A
    [3] I.A. Buyanova et al. /Materials Science and Engineering B75 (2000) 166-169
    [4] Solid State Communications 112 (1999) 443-447
    [5] N. Peyghambarian , S. W. Koch and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, New Jersey ,1993), p. 115
    [6] Bernard Diu, Franck Laloe, and Claude Cohen-Tannoudji “Quantum Mechanics” ch.13
    [7] Max and Emil Wolf, Principles of Optics, (Pergamon Press, New York, 1998) p.12
    [8] John David Jackson, Classical Electrodynamics (third edition),ch7.
    [9] K. Seeger “For Semiconductor Physics: An Introduction” 5thed, Vol. 40, p341
    [10] 沈學礎”半導體光學性質”第三章
    [11] H. Shen and F. H. pollak, phys. Rew. B 42, 7097 (1990)
    [12] N. Botta, D. K. Gaskill, R. S. Sillmon, R. Henry and R. Glosser, J. Electron. Mater. 17, 161 (1988)
    [13] K. S. Viswanathan and J. Callaway, Phys. Rev. 143, 564 (1966)
    [14] A. E. Aspnes and A. A. Studna, phys. Rev. B15, 2127 (1977)
    [15] R. N. Bhattacharys, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and H. Aharoni, phys. Rev. B37, 4044(1988)
    [16] J. Appl. Phys. 78 (4), 15 August 1995
    [17] Appl. Phys. Lett. 57 (20), 12 November 1990
    [18] Appl. Phys. Lett. 60 (17). 27 April 1992
    [19] J. Vac. Sci. Technol. A7 (3), May/Jun 1989
    [20] Appl. Phys. Lett. 58 (3). 21 January 1991
    [21] Appl. Phys. Lett. 59 (3). 15 July 1991
    [22] J. Appl. Phys. Vol. 98, 2151 (1995)
    [23] S. M. Sze, Physics of semiconductor Devices
    [24] Jpn. J. Apple. Phys. Vol.31. L853 1992
    [25] Materials Science and Engineering B50 (1997) 153-156
    [26] Physical review B Vol.54 (1996) 17568-17576
    [27] L.Malikova, F.H. Pollak, and R. Bhat, J. Electron.Mater. 27, 484 (1998)
    [28] Appl. Phys. Lett. Vol.77 , p1843 (2000)
    [29] Physic Review B,Vol.61, p7479,2000
    [30] L.Bellaiche, S.H. Wei and A. Zunger: Phys Rev B Vol.54 (1996) 17568
    [31] Jpn. J. Apple. Phys. Vol.38(1999),p5003
    [32] Appl.phys.Lett.Vol.76, p2862, 2000
    [33] S. Sakai and T.Abe: Extd.Abstr.41st Spring Meet. Japan Society of Applied physics and Related Societies, Tokyo, 1994,p 186 [in japanesel]
    [34] Jasprit Sinch “physics of Semiconductor and their Heterostuctures” vol. 5 ,p169. P185
    [35] Appl.phys.Lett.Vol.71 p1981, 1997
    [36] Journal of Crystal Growth 201/202 (1999) 355-358
    [37] Quantum physics of atoms.molecules.solids.nuclei and particles/Eisberg Resnick/second Edition
    [38] Vacuum/volume 46/number 1/pages 1 to 3/1995
    [39] D K Ferry, Semiconductors, Ch 5. Macmillan, New York (1991)
    [40] Physics of Semiconductor Devices/Sze/2nd edition

    QR CODE