簡易檢索 / 詳目顯示

研究生: 陳治瑾
Chen, Chih-Chin
論文名稱: 以基於多準則決策之情境分析推衍中小型機械公司數位轉型之策略
Multiple Criteria Decision Making Methods Based Scenario Analysis for Defining Digital Transformation Strategies of Small and Medium Sized Machinery Manufacturers
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 羅乃維
Lo, Nai-Wei
何秀青
Ho, Hsiu-Ching
黃啟祐
Huang, Chi-Yo
口試日期: 2022/07/16
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 96
中文關鍵詞: 數位轉型情境分析多準決策分析中小企業機械產業
英文關鍵詞: Digital Transformation, Scenario Analysis, Multi-Criteria Decision Making, Small and Medium Enterprise, Machinery Industry
研究方法: 德爾菲法
DOI URL: http://doi.org/10.6345/NTNU202201828
論文種類: 學術論文
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著第五代(5th Generation,5G)行動通信、巨量資料分析(Big Data Analytics)、人工智慧(Artificial Intelligence)、物聯網(Internet of Things)等新興科技之成熟,數位轉型已成為多數企業追求永續經營之目標及持續成長之必要戰略,中小型機械業者亦然,唯相關研究甚少。中小型機械業為部份已開發國家或開發中國家經濟推展的重要推力,如何導入數位轉型,為當前最重要之課題之一。
    因此,本研究以情境分析和混合多準則決策分析法(Multiple Criteria Decision Making, MCDM),定義中小型機械產業數位轉型之情境與對應策略。第一階段分析,以宏觀環境(Political, Economic, Social, Technological, Environmental and Legal, PESTEL)模型為基礎,導入混合多準則決策模型,擬訂最適情境。第二階段分析導入混合多準則決策模型,訂定策略。兩階段皆利用專家問卷,採德爾菲法篩選合適的準則,再以決策試驗實驗室評估法(Decision Making Trial and Evaluation Laboratory, DEMATEL)計算出構面及準則間的影響關係與重要性,並結合基於決策實驗室評估法之網路流程(DEMATEL-based Analytic Network Process, DANP),權衡與評估準則的權重。最後運用多準則折衷評估方法(VlseKriterijumska Optimizacija I Kompromisno Resenje, VIKOR),從折衷排名中獲得數位轉型之四個主要發展情境。
    為訂定中小型機械業者之數位轉型策略,本研究邀集台灣中小型機械業者與學研界專家填答問卷。依據實證研究結果,得到主要影響中小型機械產業數位轉型之情境因素為經濟、社會以及政治,另各情境之下最適發展之策略為建立無形資產、數位時代的人才管理、提供互補服務、打造差異化等。本研究結果,可作為中小型機械業者數位轉型之參考,分析架構也可為其他產業數位轉型之用。

    With the maturation of emerging technologies such as 5th Generation (5G), Big Data, Artificial Intelligence (AI), and Internet of thing (IoT), digital transformation has become a necessary strategy for enterprises to pursue sustainable management and sustainable growth and so has the small and medium-size machinery industry. However, there hasn't been much study on this issue, though. One of the most critical concerns facing the small and medium-size machinery industry, which serves as a major engine for economic growth in both developed and emerging nations, is how to implement digital transformation.
    This study defines the strategies for digital transformation of small and medium-size machinery industry by introducing scenario analysis and Multiple Criteria Decision Making (MCDM) methods. The first step adopts the Political, Economic, Social, Technological, Environmental and Legal (PESTEL) model. And a hybrid MCDM model is introduced to determine the most suitable scenario. A hybrid MCDM model was used in the study' second phase to establish the approach. The Decision Making and Trial Evaluation Laboratory (DEMATEL) based Analytic Network Process (ANP), and DEMATEL-Based ANP (DANP) was used to integrate the ANP and determine the influence relationships and importance of the dimensions and criteria. The weight of the criteria was calculated and assessed using the DANP. Lastly, using the compromise ranking method, VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), four primary development scenarios of digital transformation were derived.
    This study invited managers of small and medium-size machinery manufacturers in Taiwan, as well as experts from academic and research institutes, to provide opinions for determining digital transformation strategies. According to the findings of the empirical study, the main factors influencing the digital transformation of the small and medium-size machinery industry are economic, social, and political. The best development strategies in each scenario are developing intellectual capitals, talent management, provisions of compromise assets, differentiation, and so on. The study's findings can be used as a basis for the digital transformation of the small and medium-size machinery industries, and the analytic framework can be applied to the digital transformation of other industries.

    摘要i Abstract iii Table of Contents v List of Table vii List of Figure ix Chapter 1 Introduction 1 1.1 Research Backgrounds and Motivations 1 1.2 Research Purposes and Research Questions 3 1.3 Research Methods 4 1.4 Research Limitations 7 1.5 Thesis Structure 7 Chapter 2 Literature review 9 2.1 Digital transformation 9 2.2 Small and Medium Enterprise 11 2.3 Machinery Industry 12 2.4 PESTLE Method 16 Chapter 3 Research Method 19 3.1 Multi-Criteria Decision Making 19 3.2Analytic Framework and Methods 21 3.3Scenario Analysis 21 3.4 DEMATEL Method 22 3.5 Analytic Network Process (ANP) 26 3.6 DANP 27 3.7 VIKOR 28 Chapter 4 Empirical Study 31 4.1Taiwan's small and medium-sized machinery industry development 31 4.2 First Stage to Choose the Development Scenarios 33 4.3 Second Stage to Choose the Strategies for Digital Transformation 58 Chapter 5 Discussion 63 5.1Combination of Scenario and Technology Platform Deployment 63 5.2Future Research 69 Chapter 6 Conclusions 71 Reference 75 Appendix A 83 Appendix B 88 Appendix C 90 Appendix D 92

    Albukhitan, S. (2020). Developing digital transformation strategy for manufacturing. Procedia Computer Science, 170, 664-671.
    Amiri, M., Sadaghiyani, J., Payani, N., & Shafieezadeh, M. (2011). Developing a DEMATEL method to prioritize distribution centers in supply chain. Management Science Letters, 1(3), 279-288.
    Attaran, M. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal Of Ambient Intelligence And Humanized Computing, 21, 1-17.
    Balkin, J. M. (2017). Digital speech and democratic culture: A theory of freedom of expression for the information society. In Law And Society Approaches To Cyberspace (pp. 325-382). Routledge.
    Bencheva, N., & Manevsky, N. (2019). Digital transformation of the tourist industry. Knowledge International Journal, 34(1), 165-168.
    Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. V. (2013). Digital business strategy: toward a next generation of insights. MIS Quarterly, 37(2), 471-482.
    Burt, G. (2010). Revisiting and extending our understanding of Pierre Wack's the gentle art of re-perceiving. Technological Forecasting And Social Change, 77(9), 1476-1484.
    Chang, M., Gu, S., Huang, L., & Hsiao, T. Y. (2021). Constructing the Critical Success Factors in Digital Transformation for Taiwan's Travel Agencies. Frontiers, 2(11), 241-254 .
    Chang, P. C., Wang, C. P., Yuan, B. J., & Chuang, K. T. (2002). Forecast of development trends in Taiwan's machinery industry. Technological Forecasting And Social Change, 69(8), 781-802.
    Chanias, S., Myers, M. D., & Hess, T. (2019). Digital transformation strategy making in pre-digital organizations: The case of a financial services provider. The Journal Of Strategic Information Systems, 28(1), 17-33.
    Chermack, T. J., (2017). Foundations Of Scenario Planning: The Story Of Pierre Wack. New York, NY: Routledge.
    Chiou Wan Wun. (2022). Taiwan Machinery Industry Development Status and Future Trend Challenges in 2021. Journal Of Machinery Industry, 466, 8-15.
    Christodoulou, A., & Cullinane, K. (2019). Identifying the main opportunities and challenges from the implementation of a port energy management system: A SWOT/PESTLE analysis. Sustainability, 11(21), 6046.
    Chung, S. H., Lee, A. H., & Pearn, W. L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. InternationalJournal Of Production Economics, 96(1), 15-36.
    Du, H.W., Liu, X.H., Yang, E.L., & Weng, C.Y.. (2011). A review and outlook on the development of the machinery industry. Science Development, 457, 40-42.
    Frankiewicz, B., & Chamorro-Premuzic, T. (2020). Digital transformation is about talent, not technology. Harvard Business Review, 6(3).
    FutureScape, I. D. C. (2018). IDC FutureScape: Worldwide IT industry 2019 predictions.
    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1(8).
    Gupta, S. (2018). Driving digital strategy: A Guide To Reimagining Your Business. MA: Harvard Business Review Press.
    Horn, I. S., Taros, T., Dirkes, S., Hüer, L., Rose, M., Tietmeyer, R., & Constantinides, E. (2015). Business reputation and social media: A primer on threats and responses. Journal Of Direct, Data And Digital Marketing Practice, 16(3), 193-208.
    Huang, C. Y., Hsu, P. C., & Tzeng, G. H. (2012). Evaluating cloud computing based telecommunications service quality enhancement by using a new hybrid MCDM model. In Intelligent Decision Technologies. Springer, Berlin, Heidelberg, 519-536.
    Huang, C. Y., Chung, P. H., Shyu, J. Z., Ho, Y. H., Wu, C. H., Lee, M. C., & Wu, M. J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
    Hwang, B. N., Huang, C. Y., & Wu, C. H. (2016). A TOE approach to establish a green supply chain adoption decision model in the semiconductor industry. Sustainability, 8(2), 164-190.
    Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review And Deloitte University Press, 14,1-25.
    Kagermann, H. (2015). Change through digitization—Value creation in the age of Industry 4.0. Management Of Permanent Change (p. 23-45). Springer Gabler, Wiesbaden.
    Kishita, Y., Hara, K., Uwasu, M., & Umeda, Y. (2016). Research needs and challenges faced in supporting scenario design in sustainability science: a literature review. Sustainability Science, 11(2), 331-347.
    Koslosky, L. B. (2019). Commercial aviation in a digital world: a cyberphysical systems approach for innovative maintenance. Aeronautics And Aerospace Open Access Journal, 3(2), 49-64.
    Kriz, A., & Welch, C. (2018). Innovation and internationalisation processes of firms with new-to-the-world technologies. Journal of International Business Studies, 49(4), 496-522.
    Lanzolla, G., Pesce, D., & Tucci, C. L. (2021). The digital transformation of search and recombination in the innovation function: Tensions and an integrative framework. Journal Of Product Innovation Management, 38(1), 90-113.
    Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239-242.
    Liberatore, M. J., & Nydick, R. L. (2008). The analytic hierarchy process in medical and health care decision making: A literature review. European Journal Of Operational Research, 189(1), 194-207.
    Li, B. H., Hou, B. C., Yu, W. T., Lu, X. B., & Yang, C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Of Information Technology & Electronic Engineering, 18(1), 86-96.
    Liu, C. H., Tzeng, G. H., & Lee, M. H. (2012). Improving tourism policy implementation–The use of hybrid MCDM models. Tourism Management, 33(2), 413-426.
    Liu, L., & Yu, E. (2004). Designing information systems in social context: a goal and scenario modelling approach. Information Systems, 29(2), 187-203.
    Liou, J. J., Tzeng, G. H., & Chang, H. C. (2007). Airline safety measurement using a hybrid model. Journal Of Air Transport Management, 13(4), 243-249.
    Luo, Y. (2021). New OLI advantages in digital globalization. International
    Business Review, 30(2), 101797.
    Martin, R. L., & Golsby-Smith, T. (2017). Management is much more than a science. Harvard Business Review, 95(4), 128-135.
    Matarazzo, M., Penco, L., Profumo, G., & Quaglia, R. (2021). Digital transformation and customer value creation in Made in Italy SMEs: A dynamic capabilities perspective. Journal Of Business Research, 123, 642-656.
    Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business & Information Ssystems Eengineering, 57(5), 339-343.
    Morelli, N. (2006). Developing new product service systems (PSS): methodologies and operational tools. Journal Of Cleaner Production, 14(17), 1495-1501.
    Nadkarni, S., & Prügl, R. (2021). Digital transformation: a review, synthesis and opportunities for future research. Management Review Quarterly, 71(2), 233-341.
    Organization for Economic Co-operation and Development. (2019). OECD skills outlook 2019: Thriving in a digital world.
    Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal Of Intelligent Manufacturing, 31(1), 127-182.
    Park, J. (2022). Digital Transformation and Labor Market: How Much Do We Know?. KIEP Research Paper, KIEP Opinions, (232).
    Pasupuleti, M. B., & Adusumalli, H. P. (2018). Digital Transformation of the High-Technology Manufacturing: An Overview of Main Blockades. American Journal Of Trade And Policy, 5(3), 139-142.
    Pasupuleti, M. B., & Adusumalli, H. P. (2018). Digital Transformation of the High-Technology Manufacturing: An Overview of Main Blockades. American Journal of Trade and Policy, 5(3), 139-142.
    Pourahmad, A., Hosseini, A., Banaitis, A., Nasiri, H., Banaitienė, N., & Tzeng, G. H. (2015). Combination of fuzzy-AHP and DEMATEL-ANP with GIS in a new hybrid MCDM model used for the selection of the best space for leisure in a blighted urban site. Technological And Economic Development Of Economy, 21(5), 773-796.
    Rastogi, N. I. T. A. N. K., & Trivedi, M. K. (2016). PESTLE technique–a tool to identify external risks in construction projects. International Research Journal Of Engineering And Technology (IRJET), 3(1), 384-388.
    Ross, J. W., Beath, C. M., & Sebastian, I. M. (2017). How to develop a great digital strategy. MIT Sloan Management Review, 58(2), 7.
    Saarikko, T., Westergren, U. H., & Blomquist, T. (2020). Digital transformation: Five recommendations for the digitally conscious firm. Business Horizons, 63(6), 825-839.
    Saaty, T. L. (1996). Decision making with dependence and feedback: The Analytic Network Process (Vol. 4922, No. 2). Pittsburgh: RWS publications, Pittsburgh, PA.
    Saaty, T. L. (1999). Comment by Thomas L. Saaty. Journal Of Multicriteria Decision Analysis, 8(1), 23.
    Saaty, T. L. (2005). Making and validating complex decisions with the AHP/ANP. Journal Of Systems Science And Systems Engineering, 14(1), 1-36.
    Schallmo, D., Williams, C. and Boardman, L. (2017). ‘Digital transformation of business models – best practices, enablers, and roadmap’. International Journal Of Innovation Management, 21, 1–17.
    Schoemaker, P. J., & van der Heijden, C. A. (1992). Integrating scenarios into strategic planning at Royal Dutch/Shell. Planning Review, 20 (3), 41–46.
    Schoemaker, P. J. (1995). Scenario planning: a tool for strategic thinking. Sloan Management Review, 36(2), 25-50.
    Schwertner, K. (2017). Digital transformation of business. Trakia Journal Of Sciences, 15(1), 388-393.
    Scuotto, V., Nicotra, M., Del Giudice, M., Krueger, N., & Gregori, G. L. (2021). A microfoundational perspective on SMEs’ growth in the digital transformation era. Journal Of Business Research, 129, 382-392.
    Sheng, L., & Xiao, Y. Y. Hu-ChenLiu. and Ping, Zhang. (2018). DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies And Applications. Hindawi Mathematical Problems In Engineering, 2018.
    Solberg, E., Traavik, L. E., & Wong, S. I. (2020). Digital mindsets: Recognizing and leveraging individual beliefs for digital transformation. California Management Review, 62(4), 105-124.
    Surdu, I., & Narula, R. (2021). Organizational learning, unlearning and re-internationalization timing: Differences between emerging-versus developed-market MNEs. Journal Of International Management, 27(3), 100784, 1-33.
    Teece, D. J. (2010). Business models, business strategy and innovation. Long Range Planning, 43(2-3), 172-194.
    Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-criteria decision making methods: A Comparative Study (pp. 5-21). Boston, MA:Springer.
    Tseng, F. M., & Cheng, A. C. (2009). Combining scenario analysis with delphi and the technological substitution model to analyze the development of the oled tv market. In In PICMET: Portland International Center for Management of engineering and technology, proceedings (pp. 2415–2425).
    Tzeng, G. H., & Huang, C. Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals Of Operations Research, 197(1), 159-190.
    Wack, P. (1985). Scenarios: uncharted waters ahead. Harvard Business Review, 63(5), 72-89.
    Wang Weihong. (2019). Policy Governance and Development Strategies for Digital Transformation of the German Manufacturing Industry. Taiwan Economic Research Monthly, 42(10), 29-37.
    Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Planning, 52(3), 326-349.
    Welch, C. L., & Welch, L. S. (2009). Re-internationalisation: Exploration and conceptualisation. International Business Review, 18(6), 567-577.
    Wright, C., & Thorpe, D. (2015). Use of advanced and green construction materials by small and medium-sized enterprises. Management, 227, 236.
    Xiong Zhimin. (2020). Challenges and Prospects for the Development of Precision Machinery Industry in Taiwan. Journal of Machinery Industry, (452), 5-10.
    Yang, Y. P. O., Shieh, H. M., Leu, J. D., & Tzeng, G. H. (2008). A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International Journal Of Operations Research, 5(3), 160-168.
    Ye, F.Y., & Xu, X.S.. (2018). Smart Manufacturing 2030: An Analysis of Forward-Looking Policies and Technology Development Trends. Taiwan, Science & Technology Policy Research and Information Center, STPI
    Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010).Research commentary—the new organizing logic of digital innovation: an agenda for information systems research. Information Systems Research, 21(4), 724-735.
    Yoo, I., & Yi, C. G. (2022). Economic Innovation Caused by Digital Transformation and Impact on Social Systems. Sustainability, 14(5), 2600.
    Zhou, X., Chen, Z., Zhan, X., BalaMurugan, S., & Thilak, K. D. (2021). Improved policy mechanisms for the promotion of future digital business economy during covid-19 pandemic. Electronic Commerce Research, 1-21.

    無法下載圖示 本全文未授權公開
    QR CODE