簡易檢索 / 詳目顯示

研究生: 呂學儒
Lyu, Syue-Ru
論文名稱: 弱局化效應與弱反局化效應在a-IGZO薄膜電晶體中的競爭現象
Competing weak localization and weak antilocalization in amorphous indium–gallium–zinc-oxide thin-film transistors
指導教授: 江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 36
中文關鍵詞: 弱局化效應弱反局化效應低溫
DOI URL: https://doi.org/10.6345/NTNU202202581
論文種類: 學術論文
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在低溫環境並給予外加垂直磁場,進行對a-IGZO薄膜電晶體的測量,發現了正磁導率與負磁導率並存的現象,且並存比例會隨閘極電壓而變,這是由於弱局化(weak localization)與弱反局化效應(weak anti localization)在其中以不同的比例彼此競爭。我們分別研究了不同閘極電壓與不同溫度下的競爭模式,並將兩者所佔的權重化為實際數值α0 與α1進行分析。根據我們的研究,隨著閘極電壓上升,α0會微幅上升,但|α1|會有很明顯的上升,而隨著溫度上升,α0會在一定的區間中維持震盪,但|α1|則會快速下降。接著我們發現了即使是通道尺寸和ID–VG性質都顯著不同的樣品,其α0、α1都會與零磁場時的電導率有普適相關(universal dependence)。

    1.研究動機與文獻探討 P7 2.實驗原理簡介 P10 2-1 弱局化效應與弱反局化效應 P10 2-2 氧化銦鎵鋅 P14 2-3 場效電晶體 P14 2-4 基本電性參數與其公式 P16 3.實驗儀器 P17 3-1 致冷機 P17 3-2 乾式氦氣循環系統 P17 3-3 3He樣品桿 P18 3-4 電壓電流源供應器 P19 3-5 真空幫浦站 P19 4.樣品結構 P20 5.致冷機操作方法簡介 P21 6.數據處理方法 P22 7.結果與討論 P23 7-1 弱局化效應與弱反局化效應競爭現象 P23 7-1-1 基本電性量測 P23 7-1-2 調變閘極電壓控制WL與WAL競爭現象 P24 7-1-3 調變溫度控制WL與WAL競爭現象 P26 7-1-4 由理論驗證a-IGZO二維系統 P28 7-2 競爭現象與電導率普適相關 P29 7-2-1 基本電性量測 P29 7-2-2 競爭現象與電導率普適相關 P31 8.結論 P34 9.參考文獻 P35

    1. Chiu, S.P., J.G. Lu, and J.J. Lin, Quantum-interference transport through surface layers of indium-doped ZnO nanowires. Nanotechnology, 2013. 24(24): p. 245203.
    2. Yabuta, H., et al., Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films. Journal of Physics: Conference Series, 2014. 518: p. 012001.
    3. Shinozaki, B., et al., Crossover from weak localization to anti-weak localization in indium oxide systems with wide range of resistivity. Journal of Applied Physics, 2013. 113(15): p. 153707.
    4. Lang, M., et al., Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett, 2013. 13(1): p. 48-53.
    5. Altshuler, B.L., et al., Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Physical Review B, 1980. 22(11): p. 5142-5153.
    6. Lu, H.Z., J. Shi, and S.Q. Shen, Competition between weak localization and antilocalization in topological surface states. Phys Rev Lett, 2011. 107(7): p. 076801.
    7. Lu, H.-Z. and S.-Q. Shen, Weak localization of bulk channels in topological insulator thin films. Physical Review B, 2011. 84(12).
    8. Hikami, S., A.I. Larkin, and Y. Nagaoka, Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System. Progress of Theoretical Physics, 1980. 63(2): p. 707-710.
    9. Pearton, S.J., et al., Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 2003. 34(1-2): p. 3-32.
    10. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301.
    11. Klingshirn, C., ZnO: From basics towards applications. physica status solidi (b), 2007. 244(9): p. 3027-3073.
    12. Kim, C.-J., et al., Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Applied Physics Letters, 2009. 95(25): p. 252103.
    13. Kamiya, T., K. Nomura, and H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci Technol Adv Mater, 2010. 11(4): p. 044305.
    14. Nomura, K., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004. 432(7016): p. 488-492.
    15. Chen, T.-C., et al., Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress. Applied Physics Letters, 2010. 97(11): p. 112104.
    16. Kang, D., et al., Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Applied Physics Letters, 2007. 90(19): p. 192101.
    17. Park, J.-S., et al., Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Applied Physics Letters, 2008. 92(7): p. 072104.
    18. Kahng, D. and M. Atalla. Silicon-silicon dioxide field induced surface devices. in IRE Solid-State Device Research Conference. 1960.
    19. Lu, H.-Z., J. Shi, and S.-Q. Shen, Competition between Weak Localization and Antilocalization in Topological Surface States. Physical Review Letters, 2011. 107(7): p. 076801.
    20. Lu, H.-Z. and S.-Q. Shen, Weak localization of bulk channels in topological insulator thin films. Physical Review B, 2011. 84(12): p. 125138.
    21. Wang, W.-H., et al., Competing weak localization and weak antilocalization in amorphous indium–gallium–zinc-oxide thin-film transistors. Applied Physics Letters, 2017. 110(2): p. 022106.
    22. Abe, K., et al., Optical evidence for quantization in transparent amorphous oxide semiconductor superlattice. Physical Review B, 2012. 86(8).
    23. Wang, W.-H., et al., Universal dependence on the channel conductivity of the competing weak localization and antilocalization in amorphous InGaZnO4 thin-film transistors. Applied Physics Express, 2017. 10(5): p. 051103.

    下載圖示
    QR CODE