簡易檢索 / 詳目顯示

研究生: 朱秋欣
Chiu Hsin Chu
論文名稱: 台灣三個 Romano-Ward Long QT 徵候群家族之分子遺傳學研究
Molecular Genetics Studies of Romano-Ward Long QT syndrome in three Taiwanese families
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
畢業學年度: 87
語文別: 中文
論文頁數: 97
中文關鍵詞: 遺傳突變篩選心律不整
英文關鍵詞: long QT syndrome, arrhythmia, genetics, mutation screening, HERG
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在探討台灣三個 Romano-Ward Long-QT 徵候群 (LQTS) 家族的分子致因。LQTS 是心臟猝死症的一種,為體染色體顯性的遺傳性疾病,患者因心肌再極化的異常,臨床上出現心電圖之 QT interval 延長、T wave 不正常以及常患有心律不整、暈厥、突然死亡等症狀。LQTS 在遺傳上是異質性的,已有四個和此疾病相關的心肌離子通道基因的突變被報導,包括染色體 11p15.5 上的 LQT1 (KVLQT1,IKs 的 K+ 通道基因)、染色體 7q35-36 上的 LQT2 (HERG,IKr 的 K+ 通道基因)、染色體 3p21-24 上的 LQT3 (SCN5A,Na+ 通道基因)、及染色體 21q22.1-22.2 上的 LQT5 (KCNE1,K+ 離子通道的調節基因)。第五個基因是染色體 4q25-27 上的 LQT4 ,目前尚未被選殖定序出來;且至少還有一種未被定位的基因與本疾病相關。
    本論文所探討的 LQTS 家族 H87、C86 由林口長庚紀念醫院及台北榮民總醫院提供,L85 家族由苗栗為恭紀念醫院提供,並皆完成外表性狀分析。家族 C86 先前已經連鎖分析排除為 LQT1,家族 L85 綜合先前經連鎖分析的結果及臨床上的表現,推測為和 HERG 連鎖的 LQT2。本論文首先對 H87 及 C86 家族進行鄰近各 LQTS 基因座的多型性標記之連鎖分析,確定 H87 家族患者為 LQT2,C86 家族不連鎖於 LQT1~5。接著利用聚合酵素鏈反應 (PCR)、單股核酸構形多型性 (SSCP) 及 DNA 定序來檢視 H87 及 L85 家族的 HERG 基因突變。H87 家族的突變分析結果發現 HERG cDNA 第 2230 個核甘酸發生 C*T 的轉換 (transition),使 HERG 第 744 個精胺酸 (arginine) 改變為一終止密碼 (即 R744X),此突變所合成的蛋白質缺少了環狀核甘酸 (cAMP) 結合部位及碳 (C) 端的胺基酸。此核甘酸變異產生了一新的限制 DdeI 的切割位置,故以此限制的切割進一步檢視 H87 家族的 HERG 基因,結果發現此家族患者皆比正常個體多了一切割位置。家族 L85 經突變分析結果發現 HERG cDNA 第 1907 個核甘酸發生 C*T 的轉換,使 HERG 第 614 個胺基酸由丙胺酸 (alanine) 轉變為頡胺酸 (valine) (即 A614V),此胺基酸位於離子通道的孔道部位 (pore domain)。此核甘酸變異產生了一新的限制 Bsp1286I 的切點,故以此限制的切割進一步檢視 L85 家族的 HERG 基因,結果發現患者的父親及弟弟皆有 A614V 突變。由於患者的父親與叔父均遺傳了祖父的同一對偶基因,然而叔父並不具 A614V 突變,故推測此為一新突變 (de novo mutation)。家族致病突變基因的發現及發展出的突變基因檢測試驗,可為患者家族提供症狀出現前 (pre-symptomatic) 或出生前 (prenatal) 的檢測,以有利於患者家族。

    Romano-Ward Long-QT syndrome (LQTS) is an autosomal dominant disorder of cardiac repolarization that results in prolonged QT interval and T wave abnormalities on the electrocardiographs, ventricular arrhythmia, syncope and sudden death. The inherited basis of LQTS is heterogeneous. Five loci and four genes responsible for LQTS have been identified. The LQT1 locus (chromosome 11p15.5) encodes the KVLQT1 K+ channel, which co-assembles with IsK protein (encoded by LQT5 locus, chromosome 21q22.1-22.2) to form the slowly activating delayed rectifier IKs current. The LQT2 locus (chromosome 7q35-36) encodes the HERG K+ channel, which underlies the rapidly activating current IKr. The LQT3 locus (chromosome 3p21-24) encodes the cardiac Na+ channel, SCN5A. A number of heterozygous mutations have been described for each gene. The LQT4 locus is on chromosome 4q25-27, but the gene has not been isolated. Since there are other families with the long QT phenotype not linking to any of these gene loci, one or more genes may exist.
    The purpose of this study was to examine the molecular basis of LQTS in three Taiwanese families. Families H87 and C86 were provided by Chang Gung Memorial Hospital and Veterans General Hospital-Taipei. Family C86 was excluded from linkage at LQT1 previously. Family L85 was provided by Wei-Gong Memorial Hospital and was established linkage at LQT2 previously. Families H87 and C86 were genotyped with polymorphic makers corresponding to the LQTS loci. No evidence for linkage of disease phenotype was observed in family C86. Conversely, the disease cosegregated with three LQT2 makers in family H87. To test the hypothesis that HERG is the gene responsible for LQTS in families H87 and L85, the coding sequences of HERG were amplified and screened by single strand conformation polymorphism (SSCP) for mutation. A C to T transition at the first nucleotide of codon 744, resulting in the substitution of arginine for termination codon (R744X) was identified in family H87. The novel R744X mutation is predicted to result in truncation of the putative cyclic nucleotide-binding domain (NBD) and C-terminal region of the protein. The mutation was confirmed by DdeI endonuclease digestion and was present in all affected family members. In family L85, a recurrent A614V mutation in the pore region of HERG was identified. The mutation was the result of C to T transition changed the codon 614 from alanine to valine. By Bsp1286I endonuclease digestion, the mutation was present in all affected family members. Since the unaffected paternal uncle inherited the same allele form the grandfather as the proband*s father, a de novo mutation apparently occurred in the father and transmitted to his offspring. Identification of mutation can not only offer pre-symptomatic or prenatal genetic diagnosis, but also elucidate the possibility of new therapeutic approaches for treatment and prevention of this cardiovascular disease.

    目錄 I 中文摘要 IV 英文摘要 VI 圖次表 VIII 壹、緒論 1 在遺傳上異質性 2 LQT1 與 LQT5 3 LQT2 5 LQT3 7 診斷和治療 8 研究目的 10 貳、研究材料與方法 11 一、DNA 樣品 11 (一) LQTS 家族 11 (二) 正常人族群 11 二、連鎖分析 11 (一) 多型性標記 11 (二) 聚合鏈反應 (PCR) 12 (三) 限制切割及電泳分析 13 (四) 計算多型性對偶基因頻率及 LINKAGE 與GENEHUNTER 軟體分析 13 三、突變分析 19 (一) PCR放大連鎖 HERG 基因的表現子片段 19 (二) 單股核酸構形多型性分析 20 (三) 單股核酸異常構形片段之選殖、定序 22 (四) 單股核酸異常構形片段之直接定序 29 (五) KCNE1 基因直接定序 30 四、發展突變基因的檢測試驗 30 (一) H87 家族的DdeI限制切割分析 30 (二) L85 家族的Bsp1286I限制切割分析 30 參、結果 31 一、連鎖分析 31 (一) 正常人的多型性對偶基因頻率分析 31 (二) H87 家族連鎖分析 37 (三) C86 家族連鎖分析 39 (四) L85 家族連鎖數據的軟體分析 41 二、突變分析及突變基因檢測試驗 41 (一) H87 家族的 R744X 突變及 DdeI 切割檢測試驗 41 (二) L85 家族的 A614V 突變及 Bsp1286I 切割檢測試驗 42 (三) H87 及 C86 家族患者 KCNE1 基因的直接定序 44 肆、討論 45 一、正常人的多型性對偶基因頻率分析 45 二、LQTS 家族連鎖分析 46 三、突變分析 48 四、突變對 K+ 通道功能的影響 49 五、突變HOT SPOT 51 六、未來研究的方向 52 伍、參考文獻 53 圖一~十四 63 表ㄧ~十三 84

    Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to potassium current. Nature 384:78-80.
    Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683-685.
    Benson DW, MacRae CA, Vesely MR, Walsh EP, Seidman JG, Seidman CE, Satler CA (1996) Missense mutation in the pore region of HERG causes familial long QT syndrome. Circulation 93:1791-1795.
    Bruggemann A, Pardo LA, Stuhmer W, Pongs O (1993) Ether-a-go-go encodes a voltage-gated channel permeable to K and Ca and modulated by cAMP. Nature 365:445-448.
    Compton SJ, Lux RL, Ramsey MR, Strelich KR, Sanguinetti MC, Green LS, Keating MT, Mason JW (1996) Genetically defined therapy of inherited long-QT syndrome: correction of abnormal repolarization by potassium. Circulation 94:1018-1022.
    Cooper DN, Youssoufian H (1988) The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151-155.
    Curran M, Atkinson D, Timothy K, Vicent GM, Green ED, Keating MT (1993) Locus heterogeneity of autosomal dominant long QT syndrome. J. Clin. Invest. 92:799-803.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795-803.
    Dausse E, Berthet M, Denjoy I, Andre-Fouet X, Cruaud C, Bennaceur M, Faure S, Coumel P, Schwartz K, Guicheney P (1996) A mutation in HERG associated with notched T waves in long QT syndrome. J. Mol. Cell. Cardiol. 28:1609-1615.
    Dean JCS, Cross S, Jennings K (1993) Evidence of genetic and phenotypic heterogeneity in the Romano-Ward syndrome. J. Med. Genet. 30:947-950.
    Duggal P, Vesely MR, Wattansirichaigoon D, Villafane J, Kaushik V, Beggs AH (1998) Mutation of the gene for IsK Associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long-QT syndrome. Circulation 97:142-146.
    Fraser GR, Froggatt P, James TN (1964) Congenital deafness associated with electrocardiographic abnormalities, fainting attacks and sudden death: a recessive syndrome. Q. J. Med. 33:361-385.
    Geelen JL, Doevendans PA, Jongbloed RJ, Wellens HJ, Geraedts JP (1998) Molecular genetics of inherited long QT syndromes. Euro. Heart J. 19:1427-1433.
    Gellens ME, George AL Jr, Chen L, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage dependant sodium channel. Proc. Natl. Acad. Sci. USA 89:554-558.
    George AL Jr, Varkony TA, Drabkin HA, Han J, Knops JF, Finley WH, Brown GB, Ward DC, Haas M (1995) Assignment of the human heart tetrodotoxin-resistant voltage-gated Na channel *-subunit gene (SCN5A) to band 3p21. Cytogenet. Cell Genet. 68:67-70.
    Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993-94 Genethon human genetic linkage map. Nat. Genet. 7:246-339.
    Itoh T, Tanaka T, Nagai R, Kamiya T, Sawayama T, Nakayama T, Tomoike H, Sakurada H, Yazaki Y, Nakamura Y (1998) Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome. Hum. Genet. 102:435-439.
    Jervell A, Lang-Nielsen F (1957) Congenital deaf mutation, functional heart disease with prolongation of the Q-T interval and sudden death. Am. Heart J. 54:59-68.
    Jiang C, Atkinson D, Towbin JA, Splawski I, Lehmann MH, Li H, Timonthy K, Taggart RT, Schwartz PJ, Vincent GM, Moss AJ, Keating MT (1994) Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat. Genet. 8:141-147.
    Keating M, Atkinson D, Dunn C, Timothy K, Vincent GM, Leppert M (1991a) Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey Ras-1 gene. Science 252:704-706.
    Keating M, Dunn C, Atkinson D, Timothy K, Vincent GM, Leppert M (1991b) Consistent linkage of the long-QT syndrome to the Harvey Ras-1 locus on chromosome 11. Am. J. Hum. Genet. 49:1335-1339.
    Keating MT (1996) The Long-QT Syndrome: a review of recent molecular genetics and physiologic discoveries. Medicine 75:1-5.
    Ko YL, Chen SA, Tang TK, Lin JL, Chiang CE, Chen JJ, Teng MS, Chang MS, Lien WP, Wu CW (1994) No evidence for linkage of long QT syndrome and chromosome 11p15.5 markers in a Chinese family: evidence for genetic heterogeneity. Hum. Genet. 94:364-366.
    Kupershmidt S, Snyders DJ, Raes A, Roden DM (1998) A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current. J. Biol. Chem. 273:27231-27235.
    Lai LP, Deng CL, Moss AJ, Kass RS, Liang CS (1994) Polymorphism of the gene encoding a human potassium ion channel (minK). Gene 151:339-340.
    Li H, Chen Q, Moss AJ, Robinson J, Goytia V, Perry JC, Vincent M, Priori SG, Lehmann MH, Denfield SW, Duff D, Kaine S, Shiuizu W, Schwartz PJ, Wang Q, Towbin JA (1998) New mutations in the KVLQT1 potassium channel that cause long-QT syndrome. Circulation 97: 1264-1269.
    Litt M, Kramer P, Hauge XY, Weber JL, Wang Z, Wilkie PJ, Holt MS, Mishra S, Donis-Keller H, Warnich L (1993) A microsatellite-based index map of human chromosome 11. Hum. Mol. Genet. 2:909-913.
    Mackinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232-235.
    McDonald TV, Yu Z, Ming Z, Palma E, Meyers MB, Wang K, Goldstein SAN, Fishman GI (1997) A minK-HERG complex regulates the cardiac potassium current IKr. Nature 388:289-292.
    Morias-Cabral JH, Lee A, Cohen SL, Chait BT, Li M, Mackinnon R (1998) Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649-655.
    Nakajima T, Furukawa T, Tanaka T, Katayama Y, Nagai R, Nakamura Y, Hiraoka M (1998) Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation. Circ. Res. 83:415-422.
    Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15:186-189.
    Petrecca K, Atanasiu R, Akhavan A, Shrier A (1999) N-linked glycosylation sites determine HERG channel surface membrane expression. J. Physiol. 515:41-48.
    Polymeropoulos MH, Xiao H, Rath DS, Merril CR (1991) Tetranucleotide repeat polymorphism at the human tyrosine hydroxylase gene (TH). Nuc. Acids Res. 19:3753.
    Rashba EJ, Zareba W, Moss AJ, Hall WJ, Robinson J, Locati EH, Schwartz PJ, Andrews M (1996) Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. Circulation 97:451-456.
    Romano C, Gemme G, Pongiglione R (1963) Aritimie cardiache rare dell*eta pediatrica. Clin. Paediatr. 45:656-683.
    Roy N, Kahlem P, Dausse E, Bennaceur M, Faure S, Weissenbach J, Komajda M, Denjoy I, Coumel P, Schwartz K (1994) Exclusion of HRAS from long QT locus. Nat. Genet. 8:113-4.
    Roy M, Dumaine R, Brown AM (1996) HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 94:817-823.
    Sambrook J, Fritisch EF, Maniais T (1989) Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York, pp E5, 1.21-1.25, 7.37-7.52.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
    Sanguinetti MC, Jiang C, Current ME, Keating MT (1995) A mechanistic link between an inherited and an acquired Cardiac Arrhythmia : HERG encodes the IKr potassium channel. Cell 81:299-307.
    Sanguinetti MC, Curran ME, Spector PS, Keating MT (1996a) Spectrum of HERG K+ channel dysfunction in an inherited cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 93:2208-2212.
    Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996b) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80-83.
    Satler CA, Walsh EP, Vesely MR, Plummer MH, Ginsburg GS, Jacob H Jr (1996) Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes Long QT syndrome. Am. J. med. Genet. 65:27-35.
    Satler CA, Vesely MR, Duggal P, Ginsburg GS, Beggs AH (1998) Multiple different missense mutations in the pore region of HERG in patients with long QT syndrome. Hum. Genet. 102:265-272.
    Schott J-J, Charpentier F, Peltier S, Foley P, Drouin E, Bouhour JB, Donnely P, Vergnaud G, Bachner L, Moisan JP, Le Marec H, Pascal O (1995) Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am. J. Hum. Genet. 57:1114-1122.
    Schulze-Bahr E, Haverkamp W, Funke H (1995) The Long-QT syndrome. N. Engl. J. Med. 333:1783-1784.
    Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hordt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat. Genet. 17:267-268.
    Schwartz PJ, Periti M, Malliani A (1975) The long Q-T syndrome. Am. Heart J. 89:378-390.
    Schwartz PJ (1985) Idiopathic long QT syndrome: progress and questions. Am. Heart J. 109:399-411.
    Schwartz PJ, Moss AJ, Vincent GM, Crampton RS (1993) Diagnostic criteria for the long QT syndrome. Circulation 88:782-784.
    Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, Keating MT, Hammoude H, Brown AM, Chen LS, Colatsky TJ (1995) Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: implications for gene-specific therapy. Circulation 92:3381-3386.
    Spector PS, Curran ME, Keating MT, Sanguinetti MC (1996) Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel: open-channel block by methanesulfonanilides. Circ. Res. 78:499-503.
    Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hmink gene cause long QT syndrome and suppress IKs function. Nat. Genet. 17:338-340.
    Splawski I, Shen J, Timothy KW, Vicent GM, Lehmann MH, Keating MT (1998) Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics 51:86-97.
    Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1024-1045.
    Tanaka T, Nakahara K-i, Kato N, Imai T, Yamazaki T, Tomita H, Shimokawa H, Matsuhashi H, Sato N, Matsui M, Kihira S, Shimizu A, Sano T, Haneda N, Kino M, Miyakita Y, Matsuoka R, Nagai R, Yazaki Y, Nakamura Y (1994) Genetic linkage analyses of Romano-Ward syndrome (RWS) in 13 Japanese families. Hum. Genet. 94:380-384.
    Tanaka T, Nagai R, Tomoike H, Takata S, Yano K, Yabuta K, Haneda N, Nakano O, Shibata A, Sawayama T, Kasai H, Yazaki Y, Nakamura Y (1997) Four novel KVLQT1 and faour novel HERG mutations in familial long-QT syndrome. Circulation 95:565-567.
    Timothy KW, Zhang L, Meyer KJ, Vincent GM (1996) Diffences in precipitators of cardiac arrest and sudden death in chromosome 11 versus 7 genotype long QT syndrome patients. Circulation 94:I-204.
    Towbin JA, Li H, Taggart RT, Lehmann MH, Schwartz PJ, Satler CA, Ayyagari R, Robinson JL, Moss A, Hejtmancik JF (1994) Evidence of genetic heterogeneity in Romano-Ward long QT syndrome: analysis of 23 families. Circulation 90:2635-2644.
    Tyson J, TranebjaergL, Bellman S, Wren C, Taylor JFN, Bathen J, Aslaksen B, Sorland SJ, Lund O, Malcolm S, Pembrey M, Bhattacharya S, Bitner-Glindzicz M (1997) IsK and KvLQT1: Mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum. Mol. Genet. 6:2179-2185.
    Vetter DE, Mann JR, Wangemann P, Liu J, McLaughlin KJ, Lesage F, Marcus DC, Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of the IsK gene. Neuron 17:1251-1264.
    Vincent GM, Timothy KW, Leppert M, Keating M (1992) The spectrum of symptoms and QT intervals in carries of the gene for the long-QT syndrome. N. Engl. J. Med. 327:846-852.
    Vincent GM, Fox J, Zhang L, Timothy KW (1996) Beta-blockers markedly reduce risk and syncope in KVLQT1 long QT patients. Circulation 94 (Suppl. 1):I-204.
    Vincent GM (1998) The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu. Rev. Med. 49:263-274.
    Wang DW, Yazawa K, George AL Jr, Bennett PB (1996) Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. USA 93:13200-13205.
    Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT (1995a) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet. 4:1603-1607.
    Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995b) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805-811.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996a) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17-23.
    Wang Q, Li Z, Shen J, Keating MT (1996b) Genomic Organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 34:9-16.
    Ward Q (1964) A new faminal cardiac syndrome in children. J. Ir. Med. Assoc. 54:103-106.
    Warmke JE, Ganetzky B (1994) A family of patassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 91:3438-3442.
    Wymore RS, Korenberg JR, Kinoshita KD, Aiyar J, Coyne C Chen XN, Hustad CM, Copeland NG, Gutman GA, Jenkins NA (1994) Genomic organization, nucleotide sequence, biophysical properties, and localization of the voltage-gated K-channel gene KCN4A/Kv1.4 to mouse chromosome2/human 11p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11p14.3-p15.2 and KCNA/Kv1.1 to human 12p13. Genomics 20: 191-202.
    Yang WP, Levesoue PC, Little WA, Conder ML, Shalaby FY, Blanar MA (1997) KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc. Natl. Acad. Sci. USA 94:4017-4021.
    Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG, Benhorin J, Locati EH, Towbin JA, Keating MT, Lehmann MH, Hall WJ (1998) Influence of the genotype on the clinical course of the long-QT syndrome. N. Engl. J. Med. 339:960-965.
    Zhou Z, Gong Q, Epstein ML, January CT (1998) HERG channel dysfunction in human long QT syndrome. J. Biol. Chem. 273:21061-21066.
    Zipes DP (1987) Proarrhythmic effects of antiarrhythmic drugs. Am. J. Cardiol. 59:26E-31E.

    無法下載圖示
    QR CODE