簡易檢索 / 詳目顯示

研究生: 周明寬
論文名稱: 鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為
Thermal evolution of Iron on Ge(111)-c(2×8) and Ag/Ge(111)-(√3×√3) surfaces
指導教授: 傅祖怡
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 113
中文關鍵詞: 掃描穿隧顯微鏡半導體
英文關鍵詞: STM, semiconductor, Ge, Fe
論文種類: 學術論文
相關次數: 點閱:209下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。
    再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。

    By scanning tunneling microscope, the Ge(111)-c(2×8) substrate which deposited less than one monolayer Iron atoms in room temperature, and its thermal evolution by annealing to different temperature was investigated. As the annealing temperature rises, iron will cause many defects and holes on the substrate to pull out germanium. Then they mix and form some kinds of alloy islands, this makes the total volume of islands above the surface increase. After annealing temperature above 840K, only few giant Fe-Ge alloys islands remain on the surface.
    In the different experiment, we deposit Fe on Ag/Ge(111)-(√3×√3) and observe the thermal evolution. The results show that silver as the buffer layer can protect the (√3×√3) reconstruction suffering from defects, but can't prevent Iron digging on substrate and alloying with germanium when annealing temperature rises. The kinds of island in FeGe and FeAgGe system are similar, but few difference show that silver still have some effect on the development of islands.

    摘要 i Abstract ii 目錄 iii 第一章 緒論 1 第二章 實驗原理與方法 4 2.1 STM基本原理 4 2.1.1 穿隧效應 4 2.1.2 侷域電子態密度 7 2.2 STM操作原理 8 2.2.1 定電流模式 9 2.2.2 定高度模式 10 2.3 LEED的基本原理 11 第三章 實驗儀器 13 3.1 實驗儀器簡介 13 3.2 超高真空系統 14 3.2.1 油封式機械幫浦 14 3.2.2 渦輪分子幫浦 15 3.2.3 離子幫浦 16 3.2.4 鈦昇華幫浦 18 3.3 真空壓力計 19 3.3.1 派藍尼真空計 19 3.3.2 離子真空計 20 3.4 殘氣分析儀 21 3.5 離子濺射鎗 23 3.6 蒸鍍系統 24 3.6.1 電子束蒸鍍鎗 24 3.6.2 K-cell蒸鍍鎗 25 3.7 低能量電子繞射儀 26 3.8 掃描式穿隧電子顯微鏡 28 3.8.1 掃描頭 29 3.8.2 步進器 29 3.8.3 避震裝置 30 3.8.4 電子控制系統 30 第四章 實驗步驟 31 4.1 實驗流程圖 31 4.2 前置作業 32 4.2.1 製備STM探針 32 4.2.2 樣品準備 34 4.3 超高真空環境的建立 36 4.4 基底的選擇與處理 38 4.4.1 鍺(111)-c(2×8)重構 38 4.4.2 銀/鍺(111)-(√3×√3)重構 39 4.5 STM影像處理 40 第五章 實驗數據與討論 41 5.1 0.2ML鐵在鍺(111)-c(2×8)表面上的成長 41 5.1.1 室溫下蒸鍍0.2ML的鐵至鍺(111)-c(2×8)表面 42 5.1.2 加熱退火至400K 43 5.1.3 加熱退火至500K 44 5.1.4 加熱退火至570K 45 5.1.5 加熱退火至640K 46 5.1.6 加熱退火至740K 47 5.1.7 加熱退火至830K 48 5.2 0.6ML鐵在鍺(111)-c(2×8)表面上的成長 50 5.2.1 室溫下蒸鍍0.6ML的鐵至鍺(111)-c(2×8)表面 50 5.2.2 加熱退火至400K 51 5.2.3 加熱退火至500K 52 5.2.4 加熱退火至570K 53 5.2.5 加熱退火至640K 55 5.2.6 加熱退火至840K 56 5.3 鐵在鍺(111)-c(2×8)表面上的形成的特殊結構分析 58 5.3.1 三角形缺陷 58 5.3.2 環狀缺陷 60 5.3.3 2x2週期性結構島 65 5.3.4 屋頂狀島 68 5.3.5 巨大平台島 73 5.3.6 巨大角錐狀島 74 5.4 不同鐵鍍量在鍺(111) - c(2×8)表面上的比較探討 75 5.4.1 表面原子團體積的變化 75 5.4.2 表面原子團成長推論 80 5.4.3 鐵鍺系統小結論 85 5.5 0.5ML鐵在銀/鍺(111) - (√3×√3)表面上的成長 86 5.5.1 室溫下蒸鍍0.5ML的鐵至銀/鍺(111)-√3×√3表面 87 5.5.2 加熱退火至400K 88 5.5.3 加熱退火至500K 89 5.5.4 加熱退火至570K 91 5.5.5 加熱退火至640K 92 5.5.6 加熱退火至740K 93 5.5.7 加熱退火至840K 95 5.6 鐵在銀/鍺(111) - (√3×√3)表面上的形成的特殊結構分析 96 5.6.1 加熱退火低溫段的平台島 96 5.6.2 2×2週期性結構島 100 5.6.3 屋頂島 101 5.6.4 角錐狀島 102 5.6.5 大型平台島 102 5.6.6 長條狀平台島 103 5.6.7 2√3×2√3基底 104 5.7 鐵鍍在銀/鍺(111) - (√3×√3)表面上的探討 106 5.7.1 表面原子團體積的變化 106 5.7.2 銀在鐵鍺系統中的作用 108 第六章 實驗結論 109 參考文獻 110

    [1] “Tunneling through a controllable vacuum gap”
    G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl. Phys. Lett. 40, 178 (1982)
    [2] “Surface studies by scanning tunneling microscopy”
    G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)
    [3] “7×7 reconstruction on Si(111) resolved in real space.”
    G. Binnig and H. Rohrer. Phys. Rev. Lett. 50, 120-123 (1983)
    [4] “Diluted Magnetic Semiconductors”
    J. K. Furdyna and J. Kossut, Semiconductors and Semimetals Vol. 25, Academic (1986).
    [5] 國立台灣師範大學 ARML實驗室 (2002-2011):
    [5] “鈷在矽(111)-7×7與鈷在-Ag/Si(111)表面隨溫度變化之行為研究” 郭長祐(2005)
    [5] “鎳在銀/矽(111)-(√3 × √3 )表面上聚集分布和熱力衍化的研究” 張國偉(2010)
    [5] “原子島在金屬/半導體介面的成長研究 (以鈷/銀/鍺(111)為例)” 黃筱嵐(2011)
    etc.
    [6] “Scanning tunneling microscopy and spectroscopy of cleaved and annealed Ge(111) surfaces”
    R. M. Feenstra and A. J. Slavin, Surf. Sci. 251-252, 401 (1991)
    [7] “Scanning tunneling microscopy of semiconductor surfaces”
    J.A. Kubby, and J.J. Boland, Surf. Sci. Rep. 26, 61 (1996)
    [8] “New Equilibrium Phase in the Fe-Ge System, Obtained by Mechanical Alloying”
    K.B. Gerasimov and S.V. Pavlov, Intermetallics, 2000, 8, p 451-452
    [9] “Scanning tunneling microscopy study of Ag/Ge(1 1 1): observation of surface reconstruction transformations”
    H. M. Zhang R. I. G. Uhrberg, Appl. Surf. Sci. 371(2003)353
    [10] TDnucl - Thermodata Nuclear Phase Diagrams
    [11] FTlite - FACT light alloy databases
    [12] “Quantum Physics of Atoms, Molecules, Solids, Nuclei and particles (2nd Ed)”
    R. Eisberg and R. Resnik, Wiley (1985)
    [13] “A prospective: Quantitative scanning tunneling spectroscopy of semiconductor surfaces”
    R.M. Feenstra, Surf. Sci. 603, 2841(2009)
    [14] “Introduction to Soild State Physics (7th Ed)”
    Charles Kittel, Wiley, New York(1997)
    [15] “Tunneling from a many-particle point of view”
    J. Bardeen., Phys. Rev Lett 6 (2), 57 - 59 (1961)

    [16] “Observation of the effect of tip electronic states on tunnel spectra acquired with the scanning tunneling microscope”
    T.Klitsner, R. S. Becker and J. S. Vickers, Phys. Rev. B 41, 3837(1990)
    [17] “Surface Analysis—The Principal Techniques”
    John C. Vickerman, Wiley (1997)
    [18] “Surface Science—Foundation of Catalysis and Nanoscience”
    Kurt W. Kolasinski, Wiley (2002)
    [19] “Introduction to Solid State Physics 8th”
    Charles Kittel, Wiley (2005)
    [20] 真空技術與應用, 國科會精儀中心 (2001)
    [21] 真空技術精華, 蘇清森,五南書局 (2003)
    [22] User’s manual, High Vacuum Technology, Alcatel (1998)
    [23] Operating and Maintenance Handbook ST22 Titanium Sublimation Pump Cartridge, Vacuum Generators (2002)
    [24] UHV Bayard-Alpert Gauge Manual, Arun Microelectronics (2012)
    [25] Instruction Manual Extorr XT series RGA, Extorr (2009)
    [26] EX03 Ion Gun Systems Operating Manual, VG Microtech (1999)
    [27] Instruction Manual UHV Evaporator EFM3/4 Triple Evaporator EFM3T, Omicron (1999)
    [28] Vacweld Miniature K-cell Effusion Source Operator’s Handbook, Vacweld (2003)
    [29] 表面分析儀器,國科會精儀中心 (1998)
    [30] Instruments for Surface Science, Omicron (2000)
    [31] “Tunneling Images of Germanium Surface Reconstructions and Phase Boundaries”
    R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Phys. Rev. Lett. 54, 2678 (1985)
    [32] “Dimer–adatom–stacking-fault (DAS) and non-DAS (111) semiconductor surfaces: A comparison of Ge(111)-c(2×8) to Si(111)-(2×2), -(5×5), -(7×7), and -(9×9) with scanning tunneling microscopy”
    R. S. Becker, B. S. Swartzentruber, J. S. Vickers, and T. Klitsner, Phys. Rev. B 39, 1633 (1989)
    [33] “Charge transfer and asymmetry on Ge(111)-c(2×8) studied by scanning tunneling microscopy”
    E. S. Hirschorn, D. S. Lin, F. M. Leibsle, A. Samsavar, and T.-C. Chiang, Phys. Rev. B 44, 1403 (1991)
    [34] “Electronic structure of the Ge(111)-c(2×8) surface”
    J. Aarts, A. J. Hoeven, and P. K. Larsen, Phys. Rev. B 37, 8190 (1988)

    [35] “Band gap of the Ge(111)c(2×8) surface by scanning tunneling spectroscopy”
    R. M. Feenstra, J. Y. Lee, M. H. Kang, G. Meyer and K. H. Rieder, Phys. Rev. B 73, 035310 (2006)
    [36] “Surface phase diagrams for the Ag–Ge(111) and Au–Si(111) systems”
    D. Grozea, E. Bengu and L.D. Marks, Surf. Sci. 461 23 (2000)
    [37] “Introduction to Solid State Physics 8th Ed”
    Charles Kittel, Wiley (2004)
    [38] “Atomic geometry of Ge(111) √3 × √3 R30°-Ag determined by low-energy electron diffraction”
    H. Huang, H. Over, S. Y. Tong, J. Quinn and F. Jona, Phys. Rev. B 49, 13483 (1994)
    [39] “Atomic structure of the Ag/Ge(111)-(√3×√3) surface: From scanning tunneling microscopy observation to theoretical study”
    L.-W. Chou, H. C. Wu, Y.-R. Lee, J.-C. Jiang, C. Su, and J.-C. Lin, J. Chem. Phys. 131, 224705 (2009)
    [40] “Growth of Fe on Ge(111) at room temperature studied by X-ray photoelectron diffraction”
    W.G. Chu, A. Tsuruta, M. Owari, Y. Nihei, Surf. Sci. 601, 638–648 (2007)
    [41] “Ring Clusters in Transition-Metal-Silicon Surface Structures”
    P. A. Bennett, M. Copel, D. Cahill, J. Falta, and R. M. Tromp, Phys. Rev. Lett. 69, 1224–1227 (1992)
    [42] “Random and ordered arrays of surface magic clusters”
    Y. L. Wang, A. A. Saranin, A. V. Zotov, M. Y. Lai, H. H. Chang, International Reviews in Physical Chemistry 27, 317-360(2008)
    [43] “Formation conditions and atomic structure of the Si(111)-√19 Ni surface”
    S.A. Parikh, M.Y. Lee, P.A. Bennett, Surf. Sci. 356, 53-58 (1996)
    [44] “Electronic structure and stability of ring clusters in the Si(111)-(√7×√7 )Co surface”
    Min-Hsiung Tsai, John D. Dow, and Peter A. Bennett,David G. Cahill, Phys. Rev. B 48, 2486–2492 (1993)
    [45]“鎳在鍺(111) - c(2×8)及銀/鍺(111) - (√3×√3)表面上的成長”
    李振豪, 國立臺灣師範大學碩士論文(2012)
    [46] “Formation of Si clusters and their role in homoepitaxial growth on Si(111)-7×7 surfaces”
    Mon-Shu Ho, Ing-Shouh Hwang, Tien T. Tsong, Surf. Sci. 564, 93–107 (2004)
    [47] “Dynamic behavior of Si magic clusters on Si(111) surfaces”
    Ing-Shouh Hwang, Mon-Shu Ho, Tien-Tzou Tsong, Surf. Sci. 514, 309–318 (2002)

    [48] “ The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands”
    J K Tripathi, M Garbrecht, W D Kaplan, G Markovich, and I Goldfarb, Nanotechnology 23 (2012) 495603
    [49] “Layered heteroepitaxial growth of germanium on Si( 015) observed by scanning tunneling microscopy”
    M. Tomitori, K. Watanabe, M. Kobayashi, F. Iwawaki, 0. Nishikawa, Surf. Sci. 301 (1994) 214-222
    [50] “Initial growth of silver on Ge(111) studied by scanning tunneling microscopy”
    M. Hammar, M. Göthelid, U. O. Karlsson, and S. A. Flodström, Phys. Rev. B 47, 15669–15674 (1993)
    [51] “鈷在銀/鍺(111) - c(2×8)及鈷在銀/鍺(111) - (√3×√3)及(4×4)表面的結構衍化”
    徐仲俞, 國立臺灣師範大學碩士論文(2011)
    [52] “Surfactants in epitaxial growth”
    M. Copel, M. C. Reuter, Efthimios Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632–635 (1989)
    [53] “Novel strain-induced defect in thin molecular-beam epitaxy layers”
    F. K. LeGoues, M. Copel, and R. Tromp, Phys. Rev. Lett. 63, 1826–1829 (1989)
    [54] “Nucleation and step-flow growth in surfactant mediated homoepitaxy with exchange/de-exchange kinetics”
    Ivan Markov, Surface Science, 429 (1999) 102–116

    下載圖示
    QR CODE