簡易檢索 / 詳目顯示

研究生: 陸怡靖
Lu, Yi-Ching
論文名稱: 大專校院及研究機構學者研究資料使用、管理與分享認知及行為之研究
A Study on Research Data Use, Management and Sharing Cognition and Behavior of Universities and Research Institutes Scholars
指導教授: 柯皓仁
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 182
中文關鍵詞: 研究資料研究資料管理研究資料分享資料管理計畫數位化學術研究
英文關鍵詞: Research Data, Research Data Management (RDM), Research Data Sharing, Data Management Plan (DMP), Digital Scholarship
DOI URL: http://doi.org/10.6345/NTNU201900974
論文種類: 學術論文
相關次數: 點閱:181下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討國內大專校院及研究機構學者研究資料使用、管理及分享認知及行為,希望瞭解學者研究資料獲取、研究資料儲存與管理、研究資料分享與再用等認知與行為。研究方法採用問卷調查法,並以立意抽樣的方式發放問卷,發放期間為2019年5月1日至2019年7月9日止,共回收了1088份有效問卷。
    問卷結果顯示,在資料實踐方面,多數學者經常及幾乎總是創建新資料、使用研究團隊資料、研究資料儲存庫的資料做為資料來源,使用及產出資料類型皆以實驗類型為主。資料儲存與管理方面,多數學者對於儲存與檢索執行中及已結案的研究資料感到滿意。學者目前資料儲存的位置及認為供長期保存及取用的位置皆以自己的儲存裝置為主。超過半數學者沒有接受過研究資料管理相關培訓,但多數學者願意接受資料管理計畫的培訓,且有此需求。研究資料分享與再用方面,大部分學者認同將資料分享產出的資料,且也願意使用容易獲取的其他研究人員的資料集,多數學者有分享自己的研究資料與使用過他人或研究資料儲存庫的資料,但對於分享資料仍有疑慮,僅少數會公開資料給所有人使用,大部分學者希望能設立取用限制。
    分析不同學科、年齡、研究活動比例的學者研究資料使用、管理及分享的差異,結果顯示,在大部分使用及產出的資料類型中,不同學科的學者有顯著的差異。資料儲存的位置在不同學科、年齡層、研究活動比例的學者中,皆以儲存在自己的儲存裝置中占多數,資料分享情形以分享給研究團隊或應要求提供的比例較高。資料儲存與管理認知,不同學科學者有顯著的差異,研究資料分享與再用的認知則是不同學科的學者有顯著差異,而不同研究活動比例的學者僅在一項認知中有顯著差異。
    本研究之發現期能提供國內大專校院及研究機構進行資料管理等相關服務的參考。

    This study aims to understand universities and research institutions scholars’ practices and cognition of the use, management and sharing of research data. This study explores the perceptions and behavior of research data acquisition, data storage and management, data sharing and reuse, and so on. This study adopted questionnaire survey methods and purposive sampling. A total of 1088 valid questionnaire responses were collected from May 1, 2019 to July 9, 2019.
    The results show that in terms of practice of research data, most respondents frequently create their own research data, obtain data from their research team, or download data from data repositories. Experimental data is the topmost data types used and produced. In terms of research data storage and management, large number of scholars are satisfied with their processes in storing and searching their own data within or beyond the project lifetime. The location of data storage for their ongoing projects and the location of long-term storage and access are dominated by their own storage equipment. More than half of the scholars have not received training related to research data management, but a vast majority of scholars are willing to accept the training of data management plan, and there is a need for it. With regard to the sharing and reuse of research data, most scholars agree to share their data with others and are willing to use the datasets of other scholars if the datasets were easily accessible. Although a large number of scholars share their research data and use the data from others or data repository, more than half of scholars concern about sharing data and only a small number of scholars’ data open available to everyone. Most of scholars hope to place conditions on data access.
    This study also analyzes the difference in the use, management and sharing of research data by different subjects, ages and the percent of research activities. The results show that in most of the types of data used and produced, there are significant differences among scholars of different subjects. Majority of the scholars in different subjects, ages, and the percent of research activities store their data in their own storage equipment and share their data to their team or upon request. According to the cognition of data storage and management, there are significant differences among scholars of different subjects. In terms of the cognition of data storage and management, there are significant differences among scholars of different subjects. Only in one cognition of data storage and management, there are significant differences among scholars with different percent of research activities.
    It is hoped that this study will provide reference for related services such as data management in universities and research institutions.

    摘要 i Abstract iii 目次 v 表次 vii 圖次 ix 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 研究範圍與限制 6 第四節 名詞解釋 6 第二章 文獻探討 9 第一節 數位化學術研究 9 第二節 研究資料管理 17 第三節 小結 34 第三章 研究設計與實施 41 第一節 研究概念 41 第二節 研究方法與對象 42 第三節 研究流程與實施 42 第四節 問卷發展 44 第五節 研究問卷內容 45 第六節 資料整理與分析 49 第四章 資料分析與結果 51 第一節 問卷發放與回收分析 51 第二節 描述性統計分析 53 第三節 不同學科學者研究資料使用、管理及分享之認知與行為差異分析 79 第四節 不同年齡學者資料使用、管理及分享之認知與行為差異分析 98 第五節 不同研究活動比例學者資料使用、管理及分享之認知與行為差異分析 110 第六節 綜合討論 122 第五章 結論與建議 135 第一節 研究結論 135 第二節 研究建議 141 第三節 未來研究建議 142 參考文獻 145 附錄一、學者專家審查意見彙整表 153 附錄二、問卷 168 附錄三、學科列表 180

    介凤、 盛兴军(2016)。数字学术中心: 图书馆服务转型与空间变革—以北美地区大学图书馆为例。图书情报工作,60(13),64-70。
    王梅玲(2003)。從學術出版的變遷探討學者,出版者與圖書館的角色。國家圖書館館刊,2003(1),4。
    毛慶禎(2007)。開放近用運動的真諦。臺灣圖書館管理季刊,3(2),1-14。
    李丹丹、吴振新(2012)。研究数据管理服务综析。图书馆学研究,9,54-69。
    李政忠(2004)。網路調查所面臨的問題與解決建議。資訊社會研究,6,1-24
    李盈蓁、岳修平、徐式寬(2004)。大學教師教學專業發展之資訊尋求行為研究。圖書資訊學刊,2(2),105-124。
    吳紹群、吳明德(2007)。開放資訊取用期刊對學術傳播系統之影響。圖書資訊學研究,2(1),21-54。
    林巧敏(2013)。歷史學者檔案資訊需求與使用行為之研究。圖書資訊學刊,11(2),77-116。doi:10.6182/jlis.2013.11(2).077。
    林奇秀、賴璟毅(2017)。臺灣社會科學學者資料再用行為之研究。圖書資訊學研究,11(2),95-138。
    林奇秀、賴璟毅(2018)台灣社會科學量化資料再用之研究:2001-2015。教育資料與圖書館學,55(1),39-69。
    科技部(2019)。科技部補助專題研究計畫作業要點。取自https://law.most.gov.tw/LawContent.aspx?id=FL026713
    秦韻涵(2012)。從大學教師的觀點探討學術圖書館發展之資料庋用服務(碩士論文)。國立臺灣大學圖書資訊學研究所,臺北市。
    涂志芳 徐慧芳(2018)。国内外 15 所高校图书馆数字学术服务的内容及特点。 大学图书馆学报,4,29-36。
    陳雪華、陳光華(2012)。e-Research:學術圖書館創新服務。臺北市:臺大圖書館。
    黃文琪(2006)。電機及資訊領域教師研究歷程中之電子期刊使用研究(未出版之碩士論文)。國立臺灣大學圖書資訊學研究所,臺北市。
    劉怡、田月玄(2009)。網路研究方法的優勢與挑戰。護理雜誌,56(6),71-75。
    劉煌裕(2012)。開南大學教師資訊需求與資訊尋求行為之研究(未出版之碩士論文)。國立臺灣大學圖書資訊學研究所,臺北市。
    ACRL (2016). 2016 top trends in academic libraries: A review of the trends and issues affecting academic libraries in higher education. Retrieved from https://crln.acrl.org/index.php/crlnews/article/view/9505/10798
    Auckland, M. (2012). Re-skilling for research: An investigation into the role and skills of subject and liaison librarians required to effectively support the evolving information needs of researchers. Research Libraries UK. Retrieved from http://www.rluk.ac.uk/wp-content/uploads/2014/02/RLUK-Re-skilling.pdf
    Borgman, C. L. (2010). Scholarship in the digital age: Information, infrastructure, and the Internet. Cambridge, MA: MIT press.
    Borgman, C. L. (2015). Big data, little data, no data: Scholarship in the networked world. Cambridge, MA: MIT press.
    Brown, C. D. (2002). Straddling the humanities and social sciences: The research process of music scholars. Library & Information Science Research, 24(1), 73-94.
    Bryant, R., Lavoie, B., & Malpas, C. (2017). A Tour of the Research Data Management (RDM) Service Space. The Realities of Research Data Management, Part One. Dublin, OH: OCLC Research. doi: 10.25333/C3PG8J.
    Budapest Open Access Initiative (2002). Budapest open access initiative. Retrieved from https://www.budapestopenaccessinitiative.org/read
    Chinese University of Hong Kong Library (2019). Digital scholarship services. Retrieved from http://www.lib.cuhk.edu.hk/en/research/digital-scholarship
    Chowdhury, G., Boustany, J., Kurbanoglu, S., Unal, Y., & Walton, G. (2017). Preparedness for research data sharing: A study of university researchers in three European countries. Proceedings of 19th International Conference on Asia-Pacific Digital Libraries, ICADL 2017, Bangkok, Thailand, November 13-15, 2017, 104-116.
    Chu, C. M. (1992). The scholarly process and the nature of the information needs of the literary critic: A descriptive model. Unpublished doctoral dissertation, University of Western Ontario, London, Canada
    Data Coalition (2019). President Signs Government-wide Open Data Bill. Retrieved from https://www.datacoalition.org/press-releases/president-signs-government-wide-open-data-bill/
    EPSRC (2019). EPSRC policy framework on research data. Retrieved from https://epsrc.ukri.org/about/standards/researchdata/scope/
    Fischer, B. A., & Zigmond, M. J. (2010). The essential nature of sharing in science. Science and engineering ethics, 16(4), 783-799.
    Gurstein, M. B. (2011). Open data: Empowering the empowered or effective data use for everyone?. First Monday, 16(2).
    King, M. (2018). Digital Scholarship Librarian: What Skills and Competences are Needed to be a Collaborative Librarian. International Information & Library Review, 50(1), 40-46.
    Lynch, C. (2008). Big data: How do your data grow?. Nature, 455(7209), 28. doi:10.6120/JoEMLS.2018.551/0039.RS.AM
    Mitchem, P. P., & Rice, D. M. (2017). Creating Digital Scholarship Services at Appalachian State University. Portal: Libraries and the Academy, 17(4), 827-841.
    National Science Board (2005). Long-Lived Digital Data Collections Enabling Research and Education in the 21st Century. Retrieved from https://www.nsf.gov/pubs/2005/nsb0540/
    National Science Foundation (2017). Chapter II -Proposal preparation instructions. Retrieved from https://www.nsf.gov/pubs/policydocs/pappg17_1/pappg_2.jsp#IIC2j
    Nordenberg, M. A. (2009). University of Pittsburgh guidelines on research data management. Retrieved from http://www.provost.pitt.edu/documents/RDM_Guidelines.pdf.
    OECD (2007). OECD principles and guidelines for access to research data from public funding. Retrieved from http://www.oecd.org/dataoecd/9/61/38500813.pdf
    Ohio State University Libraries (2013). Defining digital scholarship. Retrieved from https://library.osu.edu/blogs/digitalscholarship/2013/03/11/defining-digital-scholarship/
    Pearce, N., Weller, M., Scanlon, E., & Kinsley, S. (2011). Digital scholarship considered: how new technologies could transform academic work. In Education, 16(1), 1-6.
    Pierce, H. H., Dev, A., Statham, E., Bierer, B. E. (2019). Credit data generators for data reuse. Nature, 570, 30-32. doi: 10.1038/d41586-019-01715-4
    Research Information Network [RIN], & National Endowment for Science Technology and the Arts [NESTA] (2010). Open to All? Case studies of openness in research. Retrieved from http://www.rin.ac.uk/system/files/attachments/NESTA-RIN_Open_Science_V01_0.pdf
    Rumsey, A. (2011). "New-Model Scholarly Communication: Road Map for Change". Scholarly Communication Institute 9. University of Virginia Library. Retrieved from http://uvasci.org/institutes-2003-2011/SCI-9-Road-Map-for-Change.pdf
    Schöpfel, J., & Prost, H. (2016). Research data management in social sciences and humanities: A survey at the University of Lille (France). Libreas: Library Ideas, 29, 98-112
    Steeleworthy, M. (2014). Research data management and the Canadian academic library: An organizational consideration of data management and data stewardship..Partnership : The Canadian Journal of Library and Information Practice and Research, 9(1). Retrieved from
    https://journal.lib.uoguelph.ca/index.php/perj/article/view/2990.
    Surkis, A., & Read, K. (2015). Research data management. Journal of the Medical Library Association : JMLA, 103(3), 154-6.
    The Centre for Digital Scholarship-Bodleian Libraries (2019). About us. Retrieved from:https://www.bodleian.ox.ac.uk/digitalscholarship/about
    THE World University Rankings (2018). World University Rankings 2019: methodology. Retrieved from:https://www.timeshighereducation.com/world-university-rankings/methodology-world-university-rankings-2019
    Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., Maribeth,M., & Frame, M. (2011). Data sharing by scientists: practices and perceptions. PloS one, 6(6), e21101.
    Tenopir, C., Dalton, E. D., Allard, S., Frame, M., Pjesivac, I., Birch, B., ... & Dorsett, K. (2015). Changes in data sharing and data reuse practices and perceptions among scientists worldwide. PloS one, 10(8), e0134826.
    Tripathi, M., Shukla, A., & Sonkar, S. K. (2017). Research data management practices in university libraries: A study. DESIDOC Journal of Library & Information Technology, 37(6), 417-424. Retrieved from https://search.proquest.com/docview/1986167481?accountid=14228
    UK Data Service (n.d.). Data management planning for ESRC researchers. Retrieved from https://www.ukdataservice.ac.uk/manage-data/plan/dmp-esrc
    University of Illinois Library (n.d.). Data management plans. Retrieved from https://www.library.illinois.edu/rds/plan/
    University of Leeds (n.d.). Research data management explained. Retrieved from https://library.leeds.ac.uk/info/14062/research_data_management/61/research_data_management_explained
    University of Oxford (2018). University of Oxford policy on the management of research data and records.Retrieved from http://researchdata.ox.ac.uk/university-of-oxford-policy-on-the-management-of-research-data-and-records/
    University of Washington Libraries (n.d.). Digital scholarship. Retrieved from http://www.lib.washington.edu/digitalscholarship
    University of Virginia (2019). Steps in the Data Life Cycle. Retrieved from https://data.library.virginia.edu/data-management/lifecycle/
    Van den Eynden, V., Corti, L., Woollard, M., Bishop, L., & Horton, L. (2011). Managing and sharing data; a best practice guide for researchers. Retrieved from https://data-archive.ac.uk/media/2894/managingsharing.pdf
    Vandegrift, Micah (2014). What is digital scholarship?Florida State University Libraries. Retrieved from https://fsulib.wordpress.com/2014/08/12/digischol101/
    Vaughan, K. L., Hayes, B. E., Lerner, R. C., McElfresh, K. R., Pavlech, L., Romito, D., & Morris, E. N. (2013). Development of the research lifecycle model for library services. Journal of the Medical Library Association, 101(4), 310-314. doi:10.3163/1536 -5050.101.4.013
    Weller, M. (2011). The dgital scholar, how technology is transforming scholarly practice. London: Bloomsbury Press.
    White House (2013). Expanding Public Access to the Results of Federally Funded Research.Retrieved from https://obamawhitehouse.archives.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research
    Wissik, T., & Ďurčo, M. (2016). Research data workflows: from research data lifecycle models to Institutional Solutions. Selected Papers from the CLARIN Annual Conference 2015, October 14–16, 2015, Wroclaw, Poland, pp. 94-107
    Zimmerman, A. S. (2008). New knowledge from old data: The role of standards in the sharing and reuse of ecological data. Science, Technology, & Human Values, 33(5), 631-652.

    下載圖示
    QR CODE