簡易檢索 / 詳目顯示

研究生: 黃三江
Hwang, San-Jiang
論文名稱: 電動車之自動充電機器人系統與應用開發
Application and System Development of Autonomous Charging Robot for Electric Vehicles
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 蔣欣翰
Chiang, Hsin-Han
白凱仁
Pai, Kai-Jun
陳瑄易
Chen, Syuan-Yi
口試日期: 2022/09/07
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 自動充電機器人電動車自主移動機器人機械手臂ArUco標籤視覺系統視覺空間系統
英文關鍵詞: Autonomous charging robot, Electric vehicles, Autonomous guiding robot, Robot arm control, ArUco tag, Robot vision system, Hand-eye calibration
DOI URL: http://doi.org/10.6345/NTNU202205217
論文種類: 學術論文
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電動車的數量逐漸提升,充電樁數量不足的問題正逐漸浮出水面,本論文提出一種自動充電機器人的設計,以具移動能力的自動充電機器人替代不可移動的充電樁,除此之外,本論文也設計一套人性化介面系統,讓使用者及管理者能分別以操控介面及監控畫面操作本應用系統。
    本論文所設計之自動充電機器人能夠在預先建立之場域中運行,自主移動機器人首先透過SLAM以及磁導引之混合導航將自動充電機器人引導至目標車輛周邊,接著再透過經校正後的網路攝影機辨識ArUco標籤,以獲取目標車輛充電座之規格與座標資訊,隨後再以UR3手臂將設計之充電槍插入充電座,以完成充電行為。此外,本論文更整合上下位控制器,再透過Vite撰寫視窗化單頁式應用程式介面。而由實驗結果可知,本論文所提出之自動充電機器人確實可以準確根據使用者介面進行充電任務。

    With the rise in the number of electric vehicles, the issue of a lack of charging stations is becoming more apparent. This paper proposed a design of an autonomous charging robot for electric vehicles, which replaces immovable charging piles with a mobile autonomous charging robot. Moreover, the system also had a user interface, allowing clients and administrators to control the system via the user interface and dashboard, respectively.
    The proposed autonomous charging robot is capable of operating in a pre-defined field. The autonomous mobile robot first guides the autonomous charging robot to the target vehicle through the hybrid navigation of SLAM and magnetic guidance, and then obtains the specification and coordinates of the target vehicle's charging sockets by processing image detection of ArUco Tags with the calibrated web camera, and finally inserts the corresponding charging plugs into the charging sockets with the UR3 Robot Arm to complete the charging application. Furthermore, this paper integrated the upper and lower controllers, as well as a Vite-coded web-based user interface single page application. The experimental results of the autonomous charging robot shows that the proposed autonomous charging robot can accurately complete charging duties via the user interface.

    誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 6 1.2.1 機器視覺空間定位 6 1.2.2 機械手臂控制 7 1.2.3 移動式機器人控制 7 1.3 研究目的 8 1.4 研究架構 8 第二章 自動充電機器人之視覺次系統設計 9 2.1 攝影機座標校正 9 2.2 基於ArUco標籤之定位辨識測試 11 2.3 攝影機與充電機器人之座標轉換 13 第三章 自動充電機器人之行為模式設計 16 3.1 機械手臂功能開發 16 3.1.1 自由關節控制模式 16 3.1.2 線性工具控制模式 16 3.1.3 充電行為設計 16 3.2 移動平台功能開發 18 3.2.1 SLAM導航功能開發 18 3.2.2 磁感測導航功能開發 19 3.2.3 混和導航功能開發 20 3.2.4 導航行為設計 22 3.2.5 返程行為設計 24 3.3 充電流程與方法設計 24 第四章 自動充電機器人之使用者介面設計 26 4.1 使用者介面系統設計 26 4.2 使用者介面開發 28 4.3 管理者介面開發 30 4.4 充電任務管理系統開發 31 4.5 機器人應用程式介面開發 34 第五章 自動充電機器人之軟、硬體系統架構與設計 35 5.1 自動充電移動平台 36 5.1.1 自動充電移動平台通訊介面 38 5.2 UR3機械手臂系統 39 5.2.1 機械手臂通訊介面 41 5.2.2 機械手臂控制介面 42 5.3 充電槍/充電座 43 5.3.1 自動充電槍與充電座設計與實作 45 5.4 RGB攝影機 46 5.5 UDOO BOLT 46 5.6 電源系統 49 5.7 軟體系統架構 51 第六章 實驗結果與討論 52 6.1 自動充電機器人室內應用場域實際運作測試 52 6.1.1 充電任務執行流程與結果 53 6.1.2 返程任務執行流程與結果 57 6.1.3 機器人避障功能實驗 60 6.2 自動充電機器人室外應用場域實際運作測試 61 6.2.1 充電任務執行流程與結果 62 6.2.2 返程任務執行流程與結果 66 6.3 自動充電機器人人性化介面實際運作畫面 67 第七章 結論及未來展望 70 7.1 結論 70 7.2 未來展望 70 參考文獻 71

    [1] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A review on electric vehicles: technologies and challenges,” Smart Cities, vol. 4, no. 1, pp. 372-404, Mar. 2021.
    [2] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” IEEE Proceedings, vol. 95, no. 4, pp. 704-718, Apr. 2007.
    [3] A. Albatayneh, M. N. Assaf, D. Alterman, and M. Jaradat, “Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles,” Rigas Tehniskas Universitates Zinatniskie Raksti, vol. 24, no. 1, pp. 669-680, 2020.
    [4] D. Berjoza, and I. Jurgena, “Effects of change in the weight of electric vehicles on their performance characteristics,” Agron. Res., vol. 15, no. 1, pp. 952–963, 2017.
    [5] “Charger prototype finding its way to Model S,” Available: https://youtu.be/uMM0lRfX6YI
    [6] “University of Graz presents robot controlled charging system,” Available: https://www.electrive.com/2018/08/14/university-of-graz-presents-robot-controlled-charging-system/
    [7] B. Walzel, M. Hirz, H. Brunner, and N. Kreutzer, “Robot-based fast charging of electric vehicles,” SAE Technical Paper, no. 2019-01-0869.
    [8] “Electrify America And Stable Collaborate to Deploy First Robotic Fast-Charging Facility for Self-Driving Electric Vehicle Fleets,” Available: https://medium.com/@stable_auto/electrify-america-and-stable-collaborate-to-deploy-first-robotic-fast-charging-facility-for-5b1e6fc9173c
    [9] “KUKA Charging Assistant Charging assistant for electric vehicles,” Available: https://ifdesign.com/en/winner-ranking/project/kuka-charging-assistant/282642
    [10] S. Di, “Design of a Cable-Driven Auto-Charging Robot for Electric Vehicles,” IEEE Access, vol. 8, 2020.
    [11] “VW is working with Kuka on robots to charge electric cars,” Available: https://electrek.co/2017/07/12/vw-kuka-robots-charge-electric-cars/
    [12] “Aiways patents autonomous charging robot,” Available: https://www.electrive.com/2020/04/19/aiways-patents-autonomous-charging-robot/
    [13] “Autonomous EV Recharging Robot,” Available: https://www.evar.co.kr/evar-robot
    [14] “Volkswagens Mobile Charging Robot – vision becomes reality,” Available: https://youtu.be/Fk_j1m7ck0c
    [15] P. Y. Kong, “Autonomous robot-like mobile chargers for electric vehicles at public parking facilities,” IEEE Trans. Smart Grid, vol. 10, no. 6, 2019.
    [16] Z. Xu, M. Haroutunian, A. J. Murphy, J. Neasham, and R. Norman, “An underwater visual navigation method based on multiple ArUco markers,” Journal of Marine Science and Engineering, vol. 9, no. 12, pp. 1432, Dec. 2015.
    [17] A. Marut, K. Wojtowicz, and K. Falkowski, “ArUco markers pose estimation in UAV landing aid system,” In 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Turin, Italy, June 19-21, 2019, pp. 261-266.
    [18] J. K. Lee, C. H. Choi, K. H. Yoon, H. J. Lee, B. S. Park, and J. S. Yoon, “Design and evaluation of cable-driven manipulator with motion-decoupled joints,” In 2008 International Conference on Smart Manufacturing Application, Goyangi, Korea, Apr. 9-11, 2008, pp. 575-580.
    [19] C. Sozer, L. Paternò, G. Tortora and A. Menciassi, “Pressure-driven manipulator with variable stiffness structure,” In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 31-Aug. 31, 2020, pp. 696-702.
    [20] J. Zhao, L. Han, L. Wang, and Z. Yu, “The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm,” In 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, June 12-15, 2016, pp. 556-559.
    [21] K. Gundogdu, S. Bayrakdar, and I. Yucedag, “Developing and modeling of voice control system for prosthetic robot arm in medical systems,” Journal of King Saud University-Computer and Information Sciences, vol. 30, no. 2, pp. 198-205, Apr. 2018.
    [22] E. Hortal, D. Planelles, A. Costa, E. Iánez, A. Úbeda, J. M. Azorín, and E. Fernández, “SVM-based brain–machine interface for controlling a robot arm through four mental tasks,” Neurocomputing, vol. 151, no. 1, pp. 116-121, Mar. 2015.
    [23] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007.
    [24] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable SLAM system with full 3D motion estimation,” In 2011 IEEE international symposium on safety, security, and rescue robotics, Kyoto, Japan, Nov. 1-5, 2011, pp. 155-160.
    [25] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” In 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, May 16-21, 2016, pp. 1271-1278.
    [26] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 2000.
    [27] G. Hua, W. Huang, H. Liu, “Accurate image registration method for PCB defects detection,” The Journal of Engineering, vol. 2018, no. 16, pp. 1662-1667, Nov. 2018.
    [28] M. Pan, C. Sun, J. Liu, Y. Wang, “Automatic recognition and location system for electric vehicle charging port in complex environment,” IET Image Processing, vol. 14, no. 10, pp. 2263-2272, Aug. 2020.
    [29] M. F. Sani, and G. Karimian, “Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker and inertial sensors,” In 2017 international conference on computer and drone applications (IConDA), Kuching, Malaysia, Nov. 9-11, 2017, pp. 102-107.
    [30] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280-2292, June 2014.
    [31] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for augmented reality: a hands-on survey,” IEEE transactions on visualization and computer graphics, vol. 22, no. 12, pp. 2633-2651, Dec. 2016.
    [32] 李俊則, 張禎元, “光學視覺與機械手臂系統整合之校正方法介紹,” 科儀新知, vol. 226, pp. 24-36, 2021
    [33] V. Lepetit, F. Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution to the PnP Problem,” International Journal of Computer Vision, vol. 82, no. 2, pp. 155-166, July 2008.
    [34] K. H. Strobl, and G. Hirzinger, “Optimal hand-eye calibration,” In 2006 IEEE/RSJ international conference on intelligent robots and systems, Beijing, China, Oct. 9-15, 2006, pp. 4647-4653.
    [35] I. Enebuse, M. Foo, B. K. K. Ibrahim, H. Ahmed, F. Supmak, and O. S. Eyobu, “A comparative review of hand-eye calibration techniques for vision guided robots,” IEEE Access, vol. 9, pp. 113143-113155, Aug. 2021.
    [36] X. Lv, G. Chen, H. Hu, Y. Lou, “A robotic charging scheme for electric vehicles based on monocular vision and force perception,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, Dec. 6-8, 2019, pp. 2958-2963.
    [37] B. Kim, J. Park, S. Park, S. Kang, “Impedance learning for robotic contact tasks using natural actor-critic algorithm,” IEEE Trans. Systems, vol. 40, no. 2, pp. 433-443, Apr. 2010.
    [38] N. Li, and B. Zhang, “The research on single page application front-end development based on Vue,” In Journal of Physics: Conference Series, Wuhan, China, Mar. 26-28, 2021, pp. 12030.
    [39] J. Garrett, “AJAX: a new approach to web applications,” Technical report, Adaptive Path, Feb. 2005.
    [40] “這台充電器我的車可以用嗎?新手必看電動車充電插頭規格介紹,” Available: https://www.ddcar.com.tw/article/13832
    [41] G. Kissel, “SAE J1772 Update For IEEE Standard 1809 Guide for Electric-Sourced Transportation Infrastructure Meeting,” SAE International.
    [42] A. Alajlan, K. Elleithy, M. Almasri, T. Sobh., “An optimal and energy efficient multi-sensor collision-free path planning algorithm for a mobile robot in dynamic environments,” Robotics, vol. 6, no. 7, 2017.

    無法下載圖示 電子全文延後公開
    2027/10/31
    QR CODE