簡易檢索 / 詳目顯示

研究生: 黃瑋平
Wei-Ping Huang
論文名稱: 低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究
Development of a low-cost, high stiffness and precision machine tool and research of the optical micro/nano mould array machining
指導教授: 陳順同
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 龍門式結構C型結構高剛性微型工具機非球面光學陣列微模具非球面曲線產生器V溝陣列微模具
英文關鍵詞: Gantry framework, C-shaped structure, high-stiffness tabletop machine tool, aspheric micro lens array mould, aspheric curve generator, V-groove array mould
論文種類: 學術論文
相關次數: 點閱:203下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以低成本方式,開發、設計及製造一部「高剛性微型工具機」,並應用此部高剛性工具機,進行高精度陣列光學微模具的開發。此微型工具機整合「機、電、光」製造技術於機器系統上,主要係為開發非球面及繞射光柵陣列模具而設計。為達高剛性與高穩定性目的,本研究設計兩種常用的工具機結構,包括C型(又稱開放式結構)與龍門式結構(又稱封閉式結構)。透由分析軟體,分別對此兩結構進行受力承載分析與設計變更,以實現高剛性工具機之設計,期能建構適用於光學微模具開發的精密工具機。過程中,也分別對此兩不同結構的工具機進行靜態與動態之振動量測,以便決定工具機之設計型態,達到高精密、高剛性微型工具機開發及光學微模具加工目的。接續再以此開發的工具機,對「非球面光學陣列微模具」及「奈米V溝光柵陣列模具」進行製作驗證。為製作非球面陣列微模具,本研究先行發展「非球面曲線產生器」,並提出「非球面精密蠟模量測」方法,以便進行非球面模具之製造,期能以低成本開發具技術自主之非球面製造技術。在陣列光柵方面,本研究亦對陣列V溝發展「CNC程式產生器」,並開發飛刀加工技術,單晶鑽石刀具以高速旋轉法快速移除材料,故V溝陣列模具可獲得高形狀精度、高尺寸精度與高表面粗糙度。由實驗證實,本研究已成功開發出高精密、高剛性微型工具機,並能技術自主的完成非球面光學陣列微模具與奈米V溝光柵陣列微模具。

    This study presents a novel, economical and efficient fabrication technique for precisely generating optical micro mould array on the developed tabletop machine tool. The machine combines relative mechanical, electrical with optical technologies to fabricate diffractive optical micro moulds. To obtain high system-stiffness of machine tool, two structures including C-shaped and gantry frameworks are designed and compared. Via the mechanical design, interference simulation, deformation analysis on the structure, and measurement of dynamic and static vibrations, a stable high-stiffness tabletop machine tool can be achieved successfully. To machine micro aspheric mould array, two techniques involving the aspheric curve generator and aspheric wax mould measurement method is developed and proposed in the study. Fly cutting which applies a single crystalline diamond tool and simple balancing principle of grinding wheel, the micro V-groove array can be successfully implemented on the workpiece made of Ni-P plate on the developed machine. Experimental results demonstrate satisfactory geometric accuracy, dimensional accuracy and surface roughness can be realized, respectively. It is concluded that the proposed method has the potential of producing nano-scale optical moulds by using the developed machine tool.

    中文摘要 I 英文摘要 II 總目錄 III 圖目錄 VII 表目錄 XIII 符號表 XV 第一章 緒論 1.1前言 1 1.2研究動機 3 1.3研究目的 4 1.4研究方法 5 1.5文獻回顧 7 1.5.1微型工具機的發展現況 7 1.5.2鎳磷合金製程技術現況 9 1.5.3光學元件製造技術的發展現況 13 1.6論文架構 22 第二章 光學模具開發之相關原理應用 2.1基礎幾何光學原理 23 2.1.1反射定律 24 2.1.2折射定律、干涉定律與繞射定律 25 2.2透鏡之分類與光學原理應用 25 2.3光柵之分類與光學原理應用 28 2.4化學沉積原理 30 2.4.1電鍍原理 30 2.4.2無電鍍鎳化學原理 33 2.4.3合金化學沉積原理 35 第三章 高剛性工具機系統設計 3.1高剛性微型工具機設計 37 3.1.1 微型工具機設計 37 3.1.2 結構設計與形變分析 38 3.1.3 微型工具機整體結構形變分析 40 3.1.4 C型結構與龍門結構整體受力形變分析 43 3.1.5 多工型主機頭座設計 43 3.1.6 高速主軸選用與夾持設計 45 3.2工具機平衡系統設計 46 3.3位移系統與主軸設計 47 3.4油霧冷卻系統設計 47 3.5零組件加工、組裝與校正 48 3.6人機界面功能模式規劃 49 3.7高剛性微型工具機實體完成 50 3.8高剛性微型工具機之剛性驗證 51 3.8.1振動量測介面設計 51 3.8.2靜態振動量測與分析 52 3.8.3動態振動量測與分析 54 3.9結果與討論 55 3.10本研究所用相關設備 56 3.10.1 CNC綜合切削加工機 57 3.10.2 CNC線切割放電加工機 57 3.10.3精密研磨拋光機 58 3.10.4 工具顯微鏡 58 3.10.5掃描式電子顯微鏡 59 3.10.6場發射掃描式電子顯微鏡 59 3.10.7雷射共軛焦顯微鏡 60 3.10.8形狀量測儀 60 第四章 微型光學模具製造技術開發 4.1高硬度光學模具基材製作 61 4.1.1無電鍍鎳沉積槽與對流設計 61 4.1.2高硬度光學模具基材沈積實驗 62 (a).含磷量對模具表面光澤度的影響 62 (b).鍍液對流與表面性質關係 63 (c).沉積時間對厚度的影響 64 (d).無電鍍鎳磷合金製作 64 4.1.3結果與討論 65 4.2非球面微型模仁陣列製造技術開發 66 4.2.1非球面曲率產生器開發 67 4.2.2微型銑削與超高速微型銑削定義 69 4.2.3非球面微型模仁陣列成型實驗 70 (a).非球面模仁設計 70 (b).模仁切削之冷卻條件選用 71 (c).模仁切削路徑比較 72 (d).最小扇形誤差實驗 74 (e).模仁切削之進給速度選用 75 (f).非球面陣列模仁製作 76 (g).非球面陣列光學微模具製作 79 (h).非球面模仁曲面萃取技術與量測 81 4.2.4結果與討論 81 4.3 陣列V溝光柵製造技術開發 83 4.3.1陣列V溝之CNC路徑產生器開發 84 4.3.2鑽石飛刀平衡機構設計 85 4.3.3陣列V溝成型實驗 85 (a).陣列V溝模仁設計 85 (b).陣列V溝順、逆銑決定 87 (c).V溝切削之冷卻條件選用 88 (d).V溝切削之進給速度選用 89 (e).陣列光學V溝製作 91 (f).多道程序製作陣列光學V溝 93 4.3.4結果與討論 95 第五章 總結 5.1成本與精度比較 96 5.2研究成果與貢獻 96 5.3未來展望 97 參考文獻 99 附錄 A. 已發表期刊論文 108 B. 個人簡歷 109

    [1]光學元件,裕群光電股份有限公司產品型錄,2011
    http://www.controloptics.com.tw/company-ch.html
    [2]趙崇禮,馬廣仁,林宏彞,微模具製程技術發展現況,機械工業雜誌,第279期,pp.43-52,2006
    [3]楊啟榮,強玲英,黃奇聲,微系統LIGA製程之精密電鑄技術,科儀新知,PP22,2000
    [4]王文瑞,"微型工具機技術探討",機械工業雜誌,276期,2006,17-27頁
    [5]光電科技工業協進會,台灣光電產業創高峰 突破2.2兆光模—全球光電市場與台灣產業之產值統計與分析,PIDA記者聯誼會新聞稿,2010
    [6]MEMS Equipment Sales Accelerate from 2010 as High-Volume Consumer Applications Ramp Production, http://www.semi.org/en/P044528
    [7]E. Kussul, T. Baidyk, L.R. Huerta, A.C. Ruiz, G. Velasco, L. Kasatkina, Development of micro machine tool prototype for micro factories, Journal of Micromechanics and Microengineering, 2002, pp.795-812
    [8]J.H. Lee, S.R. Park, S.H. Yang, Y.S. Kim, Fabrication of a v groove on the optical fiber connector using a miniaturized machine tool, Journal of Materials Processing Technology, 2004, pp.1716–1722
    [9]Y. Morimoto, Y. Ichida, R. Sato, and T. Unno, Measurement and Vibration Control of Dynamic Characteristics of Feed Table for Machine Tool, Journal of the JSPE, Vol. 66 , No. 4, 2000 , pp. 492-494
    [10]段玉強,滾珠螺桿預壓控制與磨擦力補償,中正大學機械研究所碩士論文,民國八十五年六月
    [11]顏木田,線性馬達驅動之線切割放電工具機研究,2004 自動控制研討會,民國九十三年三月
    [12]KERN Micround Feinwerktechnik, Pymind nano 超精密工具機
    http://www.kern-microtechnic.com
    [13]Kugler of America, MIROGANTRY 超精密加工機
    http://www.kuglerofamerica.com
    [14]日本MISUMISHI公司, 線切割放電加工機
    http://www.mitsubishi-world.com/index.php
    [15]日本Takashima公司, 多機能微型加工機, http://www.takashima.co.jp/
    [16]中美科學股份有限公司, Freeform 700A,
    http://www.zimmerman.com.tw
    [17]日本MAKINO公司, F5-5XR 5軸綜合切削加工機
    http://www.makino.com]
    [18]日本NAGASE 公司, NSF-600 超精密研磨加工機
    http://www.nagase-i.jp
    [19]日本SODICK公司, Ultra Nano 500 超精密加工機
    http://www.sodick.com
    [20]E.S. Lee, S.Y. Baek, A study on optimum grinding factors for aspheric convex surface micro-lens using design of experiments, International Journal of Machine Tools & Manufacture, Vol. 47, pp.509–520, 2007
    [21]F.J. Chen, S.H. Yin, H. Huang, H. Ohmori, Y. Wang, Y.F. Fan, Y.J. Zhu, Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement, International Journal of Machine Tools & Manufacture, Vol. 50, pp.480–486, 2010
    [22]B. Wang, P. Zhang, Y. Liang, S. Dong, Development of the control system for three-axis ultraprecision compact micromilling machine, American Vacuum Society, pp.1285-1287, 2009
    [23]D. A. Axinte, S. A. Shukor, A. T. Bozdana, An analysis of the functional capability of an in-house developed miniature4-axis machine tool, International Journal of Machine Tools & Manufacture,Vol. 50, pp.191–203, 2010
    [24]A. G. Phillip, S. G. Kapoor, R. E. DeVor, A new acceleration-based methodology for micro/meso-scale machine tool performance evaluation, International Journal of Machine Tools & Manufacture, Vol. 46, pp.1435–1444, 2006
    [25]S. Gordon, M. T. Hillery, Development of a high-speed CNC cutting machine using linear motors, Journal of Materials Processing Technology, Vol. 166 , pp.321–329, 2005
    [26]T. Kurita, M. Hattori, Development of new-concept desk top size machine tool, International Journal of Machine Tools & Manufacture, Vol. 45 pp.959–965, 2005
    [27]K. Erkorkmaz, J. M. Gorniak, D. J. Gordon, Precision machine tool X–Y stage utilizing a planar air bearing arrangement, CIRP Annals - Manufacturing Technology, Vol. 59, pp.425–428, 2010
    [28]B. P. Daly and F. J. Barry, Electrochemical Nickel-Phosphorus Alloy Formation, International Materials Reviews, Vol.48, 2003, pp. 326-338.
    [29]M. Thoma, A Cobalt/Chromic Oxide Composite Coating for High-Temperature Wear Resistance, Plat. Surf. Finishing, Vol. 71, No. 3, 1984, pp. 51-53.
    [30]A. Bai, P. Y. Chuang, C. C. Hu, The Corrosion Behavior of Ni-P Deposits with High Phosphorus Contents in Brine Media, Materials Chemistry and Physics, Vol. 82, 2003, pp.93-100.
    [31]I. Paseka, Evolution of Hydrogen and its Sorption on Remarkable Activity Amorphous Smooth Ni-P(x) Electrode, Electrochim. Acta, Vol. 40, No. 11, 1995, pp. 1633-1640
    [32]R. K. Shervedani and A. Lasia, Studies of the Hydrogen Reaction on Ni-P Electrodes, J. Electrochem. Soc., Vol. 144, No.2, 1997, pp.511-519
    [33]G. Lu, P. Evans. And G. Zangari, Electrocatalytic Properties of Ni-Based Alloy Toward Hydrogen Evolution Reaction in Acid Media, J. Electrochem. Soc., Vol. 150, No.5, 2003, pp.551-557.
    [34]T. Burchardt, Hydrogen Evolution on NixP Alloys: The Influence of Sorbed Hydrogen, Int. J. Hydrogen Energy, Vol.26, 2001, pp.1193-1198.
    [35]L.T. Romankiw, A Path: From Electroplating Through Lithographic Masks in Electronics to LIGA in MENS, Electrochimica Acta, Vol. 41, Nov.20-22, 1997, pp. 2985 –3005.
    [36]A. Maner, S. Harech and W. Ehrfeld, Mass Production in Micro-devices With Extreme Aspect Ratio by Electroforming , Plating and Surface Finishing, Vol. 78, March 1988, pp. 60-65.
    [37]周敏傑、呂春福、王紀雯、何淑玲、葉信宏, 微結構之合金電鑄技術, 機械工業雜誌,1998 年8月號,pp. 150 –157.
    [38]C. S. Lin, P. C. Hsu, K. C. Peng, L. Chang and C.H. Chen, Annealing Behavior of Nickel Electrodeposited from Sulfamate Bath at Different Temperatures ,Materials Transactions, JIM, Vol. 42, No. 2, 2001, pp. 316-322.
    [39]林招松、鄧伊浚、李威志、陳黼澤,鎳磷、鈷磷與鎳鈷磷合金電鍍之研究,民國91 年8 月,NSC91-2216-E-002-040
    [40]H. B. Lee, D. S. Wuu, C.Y. Lee, C.S. Lin, Wear and immersion corrosion of Ni–P electrodeposit in NaCl solution, Tribology International, Vol. 43, pp.235–244, 2010
    [41]M. Crobu, A. Scorciapino, B. Elsener, A. Rossi, The corrosion resistance of electroless deposited nano-crystalline Ni–P alloys, Electrochimica Acta, Vol.53, pp.3364–3370, 2008
    [42]K. H. Hou, M. C. Jeng, M. D. Ger, The heat treatment effects on the structure and wear behavior of pulse electroforming Ni–P alloy coatings, Journal of Alloys and Compounds, Vol. 437, pp289–297, 2007
    [43]G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, 1990, Chapter 1.
    [44]神戶德藏著,莊萬發譯著,無電解鍍金,復漢出版社,民國七十四年,第一章、第三章。
    [45]G. G. Gawrilov, Chemical(Electroless)Nickel-Plating, Portcullis Press Limited, Redhill, Surrey, 1979, Chapter 5.
    [46]H. Zhang, S. Wang, G. Yao, Z. Hua, Electroless Ni–P plating on Mg–10Li–1Zn alloy , Journal of Alloys and Compounds , Vol. 474, pp.306–310, 2009
    [47]M. Yan, H. G. Ying, T. Y. Ma, Preparation of coatings with high adhesion strength and high corrosion resistance on sintered Nd–Fe–B magnets through electroless plating, Materials Chemistry and Physics,Vol.113 pp.764–767, 2009
    [48]X. Cui, G. Jin, Q. Li, Y. Yang, Y. Li, F. Wang, Electroless Ni–P plating with a phytic acid pretreatment on AZ91D magnesium alloy, Materials Chemistry and Physics , Vol. 121 pp.308–313, 2010
    [49]J. S. Leggatt, M. C. Hutley, Micro lens arrays for interconnect of single-mode fiber arrays, Electron Device Letter, Vol.27, 1991, pp.238-240
    [50]楊錫杭,黃俊瑋,紫外光固化膠製作微透鏡陣列之新式製程研究,中國機械工程學會第 21 屆全國學術研討會論文集,2004,pp.5055-5060
    [51]R. F. Shyu , H. Yang, Vacuum suction aid for microlens array formation using LIGA-like process , Manufacturing Technology , Vol. 29, pp. 518–523, 2006
    [52]J. N. Kuo, C. C. Hsieh, S. Y. Yang, G. B. Lee,An SU-8 microlens array fabricated by soft replica molding for cell counting applications , Journal of Micromechanics and Microengineering, Vol.17 pp.693–699, 2007
    [53]J. J. Yang, Y. S. Liao, C. F. Chen, Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process , Optics Communications, Vol.270, pp. 433–440, 2007
    [54]C. C. Chen , C. M. Chen, J. R. Chen, Toolpath generation for diamond shaping of aspheric lens array , Journal of Materials Processing Technology, Vol.192–193, pp.194–199, 2007
    [55]Y. Yamamoto, H. Suzuki, T. Onishi, T. Okino, T. Moriwaki, Precision grinding of microarray lens molding die with 4-axes controlled microwheel, Science and Technology of Advanced Materials, Vol.8 , PP.173–176, 2007
    [56]H. Suzuki, T. Moriwaki, Y. Yamamoto, Y. Goto, Precision Cutting of Aspherical Ceramic Molds with Micro PCD Milling Tool , Annals of the CIRP, Vol. 56, PP.131-134, 2007
    [57]J. H. Lee, S.R. Park, S.H. Yang, Y.S. Kim, Fabrication of a v groove on the optical fiber connector using a miniaturized machine tool, Journal of Materials Processing Technology,Vol. 155–156, pp.1716–1722, 2004
    [58]Y. J. Huang, T. L. Chang, H. P. Chou, C. H. LIN, A Novel Fabrication Method for Forming Inclined Groove-Based Microstructures Using Optical Elements, Japanese Journal of Applied Physics, Vol. 47, No. 6, pp. 5287–5290, 2008
    [59]C. H. An, Y. Zhang, Q. Xu, F. H. Zhang, J .F. Zhang, L. J. Zhang, J. H. Wang, Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine , International Journal of Machine Tools & Manufacture, Vol.50, pp.374–385, 2010
    [60]H. J. Kang, H. J. Kim, J. S. Kim, W. Y. Choi, W. S. Chu, S. H. Ahn, Laser marking system for light guide panel using design of experiment and web-based prototyping, Robotics and Computer-Integrated Manufacturing, Vol.26,pp.535–540, 2010
    [61]S. H. Oh, J. G. Kim, C. S. Kim, D. S. Choi, S. Chang, M. Y. Jeong, The fabrication of 3-D nanostructures by a low- voltage EBL , Applied Surface Science, Vol.257, pp.3817–3823, 2011
    [62]J. Xie, Y. W. Zhuo, T. W. Tan, Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel , Precision Engineering, Vol.35, ,pp.173–182, 2011
    [63]經濟部,微型製造技術應用現況分析,經濟部科技專案成果,2007,3-4頁
    [64] K. P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilvaf, " Micro and Nano Machining by Electro-Physical and Chemical Processes, CIRP Annals-Manufacturing Technology, Vol.55, 2006, pp.643-666
    [65]R. W. Boyd, Radiometry and the detection of Optical Radiation ,John Wiley & Sons,1983。
    [66]陳光鑫等編譯,光電子學,全華科技圖公司,1999。
    [67]林辰生、陳德請,近代光電工程導論,全華科技圖書公司,2004。
    [68]JENOPTIK Polymer Systems, Inc., Product catalog, 2009
    [69]Michael Pate, Applied Digital Projector Design with Zemax, http://www.optima-research.com/Training/Applied_Digital_Projector_Design_With_ZEMAX.htm
    [70]High power light aol-sx1xax 1w star series, APEX OPTO CORP., Catalog, 2009, p7
    [71]呂政峯編,電鍍學,世一書局,pp. 10,民82。
    [72]蘇癸陽編,實用電鍍理論與實際,復文出版社,pp. 96-98,民88。
    [73]楊聰仁,「無電鍍鎳技術與應用」,化工,第40 卷,第6 期,第18-27頁,1993
    [74]R. M .Lukes, The mechanism for the autocatalytic reduction of nickel by hypophosphite ion , Plating 51 (1964) 969.
    [75]G. B. Veeresh Kumar, C. S. P. Rao, N. Selvaraj, M. S. Bhagyashekar, Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites, Journal of Minerals and Materials Characterization and Engineering, Vol. 9, No.1, 2010, pp.43-55
    [76]Vcenter-55 操作手冊,全系列立式綜合加工中心機,台中精機股份有限公司
    [77]慶鴻機電股分有限公司,線切割機台,http://chmer.web66.com.tw/
    [78]高擎股份有限公司,精密研磨拋光機
    [79]漢磊股份有限公司,工具顯微鏡
    [80]日本電子株式會社,掃描式電子顯微鏡
    [81]PENNSTATE,場發射掃描式電子顯微鏡http://www.mri.psu.edu/facilities/NNIN
    [82]KEYEMCE,雷射共軛焦顯微鏡,,http://www.keyence.com.tw/
    [83]中美科學股份有限公司,形狀量測儀,http://www.zimmerman.com.tw/index.asp
    [84]W. Sun, J.W. McBride, M. Hill, "A new approach to characterising aspheric surfaces", Journal of Precision Engineering, Vol.34, pp.171- 179 ,2010
    [85]X. M. Lai, H. T. Li, C. F. Li, Z. Q. Lin, J. Ni, "Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness", Journal of Machine Tools and Manufacture, Vol.48, 2008, pp.1-14
    [86]I. S. Kang, J. S. Kim, J. H. Kim, M. C. Kang, Y. W. Seo, "A mechanistic model of cutting force in the micro end milling process", Journal of Materials Processing Technology, Vol.87, 2007, pp.250-255
    [87]S. M. Son, H. S. Lim, J. H. Ahn, "Effects of the friction coefficient on the minimum cutting thickness in micro cutting", Journal of Machine Tools and Manufacture, Vol.45, 2005, pp.529-535
    [88]倪軍, Proceeding of Some recent advancement in Micro/Meso scale manufacturing , 簡報資料,University of Michigan, 2004.
    [89]S. Ding, M. A. Mannan, A. N. Poo, D. C. H. Yang, Z. Han, "Adaptive iso-planar tool path generation for machining of free-form surfaces", Computer-Aided Design, Vol.35, pp.141-153, 2003

    下載圖示
    QR CODE