研究生: |
張庭慎 Jhang, Ting-Shen |
---|---|
論文名稱: |
空氣汙染對都市聲景影響的初步分析 A preliminary assessment of the effects of air pollution on urban soundscape |
指導教授: |
林登秋
Lin, Teng-Chiu 端木茂甯 Tuanmu, Mao-Ning |
口試委員: |
林登秋
Lin, Teng-Chiu 端木茂甯 Tuanmu, Mao-Ning 林子皓 Lin, Tzu-Hao |
口試日期: | 2024/07/29 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 聲景 、發聲類群 、聲音指數 、環境汙染 、嚴重空氣汙染 |
英文關鍵詞: | soundscape, sound-producing taxa, acoustic index, environment pollution, severe air pollution |
DOI URL: | http://doi.org/10.6345/NTNU202401843 |
論文種類: | 學術論文 |
相關次數: | 點閱:245 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球環境變動日趨劇烈,尤其是人類活動所造成的環境汙染,其中空氣汙染對人類與眾多生物皆有直接與間接的影響,故引起很大的關注。有研究顯示空汙不僅會影響生物呼吸系統的生理作用,如降低肺活量、增加呼吸速率等,導致生物的發聲行為產生變化,同時也會影響生物的時空分布與物種組成,改變一個地點的聲音的多樣性與能量,最終將會反映在聲景(soundscape)的特徵上。然而多數有關空氣汙染和聲景的研究是針對森林大火或沙塵暴等重大特殊事件,評估空氣汙染對聲景的影響,卻甚少探討都市中常見的空氣汙染對聲景的影響。本研究使用空氣品質指標(air quality index, AQI)評估空氣汙染的程度,同時利用亞洲聲景監測網三個測站的聲景資料,計算聲音指數(acoustic indices)量化聲音特徵,首先以spearman's correlation分析聲音指數與AQI之間的關係,並以研究期間之日AQI分別在三個地點中四季的第25百分位數和第75百分位數作為閾值分別篩選出在台中與高雄所發生的空氣汙染不嚴重和嚴重空氣汙染的日子,以Mann-Whitney U test分析汙染嚴重與汙染不嚴重期間指數的差異,探討都市中空汙對聲景的影響。結果顯示大部分在春季、清晨與夜晚群集時空氣汙染對聲景有負面影響,使發聲頻率單一且生物聲音能量降低,環境中生物音的比例降低,而在秋冬季的空氣汙染大部分對聲景有正向影響,顯示發聲頻率多樣且生物聲音能量增強,環境中生物音的占比增加,表示生物的活動、鳴叫方式會受空氣汙染影響而改變。本研究呈現了空氣汙染期間聲景變化的例子,透過聲音的角度來探討空汙不同面向的影響,將能更了解空汙對生物的危害,並提供未來環境影響評估時的參考。
In the recent years, global environment has been going through drastic changes, especially the environmental pollution caused by human activities. Among different types of environmental pollution, air pollution has direct and indirect effects on both humans and wildlife as such has attracted a lot of attention. Studies have shown that air pollution not only affects the physiological functions of respiratory systems, such as reducing lung capacity and increasing respiratory rates, but also leads to changes in the vocalization behavior. Furthermore, air pollution also influences the species composition and temporal and spatial distribution of wildlife. These changes may ultimately influence the characteristics of the soundscape. However, most previous studies reported the effect of pollution on soundscape through extreme events such as forest fire or sandstorm, with the effects of air pollution in urban areas on soundscape largely unknown. In this study four acoustic indices from three sites of Asian Soundscape Monitoring Network were used to quantify the characteristics of soundscape. Spearman’s correlation was used to analyze the relationship between the acoustic indices and air quality index (AQI), an indicator of the air pollution level. The 25th and 75th percentiles of the daily AQI during the study period were used to select days with low and high pollution for each of the three locations across four seasons. The Mann-Whitney U test was used to analyze the differences in acoustic indices between low and high AQI pollution days to investigate the impact of urban air pollution on soundscape. Results showed that air pollution reduced frequency diversity, intensity of the sounds produced by non-human organisms (biophony), and the dominance of biophony in soundscape mostly in the spring and mostly for the dawn, dusk and night acoustic communities. However, in autumn and winter, air pollution had opposite effects on soundscape. These results suggest that vocalization patterns and activities of wildlife could be influenced by air pollution. This study illustrates that the effects of air pollution on individuals were ultimately reflected in soundscape. Thus, through analyzing variation of soundscape using acoustic indices, it is possible to explore the effects of air pollution to wildlife and provide a reference for future environmental impact assessments.
Acevedo, M. A., & Villanueva-Rivera, L. J. (1973). Using Automated Digital Recording Systems as Effective Tools for the Monitoring of Birds and Amphibians. Bulletin, 34(1), 211–214. https://www.jstor.org/stable/3784958
Anderson, M. L. (2015). As the Wind Blows: The Effects of Long-Term Exposure to Air Pollution on Mortality. http://www.nber.org/papers/w21578
Boelman, N. T., Asner, G. P., Hart, P. J., & Martin, R. E. (2007). Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17(8), 2137–2144. https://doi.org/10.1890/07-0004.1
Boullhesen, M., Vaira, M., Barquez, R. M., & Akmentins, M. S. (2021). Evaluating the efficacy of visual encounter and automated acoustic survey methods in anuran assemblages of the Yungas Andean forests of Argentina. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107750
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1
Browning, E., Gibb, R., Glover-Kapfer, P., & Jones, K. E. (2017). Passive acoustic monitoring in ecology and conservation. WWF Conservation Technology Series, 1(2). https://www.wwf.org.uk/sites/default/files/2019-04/Acousticmonitoring-WWF-guidelines.pdf
Cartolano, M. C., Berenshtein, I., Heuer, R. M., Pasparakis, C., Rider, M., Hammerschlag, N., Paris, C. B., Grosell, M., & McDonald, M. D. (2020). Impacts of a local music festival on fish stress hormone levels and the adjacent underwater soundscape. Environmental Pollution, 265. https://doi.org/10.1016/j.envpol.2020.114925
Chen, T. M., Gokhale, J., Shofer, S., & Kuschner, W. G. (2007). Outdoor air pollution: Nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. American Journal of the Medical Sciences, 333(4), 249–256. https://doi.org/10.1097/MAJ.0b013e31803b900f
Cheyne, S. M. (2008). Effects of meteorology, astronomical variables, location and human disturbance on the singing apes: Hylobates albibarbis. American Journal of Primatology, 70(4), 386–392. https://doi.org/10.1002/ajp.20502
Choi, S.-G., Yoon, E.-A., Han, I., & Oh, W. (2016). Comparison of Echogram Analysis Methods for Evaluating the Sound-scattering Layer. Korean Journal of Fisheries and Aquatic Sciences, 49(6), 856–861. https://doi.org/10.5657/kfas.2016.0856
Deichmann, J. L., Hernández-Serna, A., Delgado C., J. A., Campos-Cerqueira, M., & Aide, T. M. (2017). Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecological Indicators, 74, 39–48. https://doi.org/10.1016/j.ecolind.2016.11.002
Dixon, A. P., Baker, M. E., & Ellis, E. C. (2020). Agricultural landscape composition linked with acoustic measures of avian diversity. Land, 9(5). https://doi.org/10.3390/LAND9050145
Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y., & Peck, M. (2018). Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecological Indicators, 95, 939–952. https://doi.org/10.1016/j.ecolind.2018.06.012
Farina, A., & Gage, S. (2017). Ecoacoustics: A New Science. In Ecoacoustics: The Ecological Role of Sounds (pp. 1–11). https://doi.org/10.1002/9781119230724.ch1
Farina, A., & James, P. (2016). The acoustic communities: Definition, description and ecological role. Biosystems, 147, 11–20. https://doi.org/https://doi.org/10.1016/j.biosystems.2016.05.011
Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109. https://doi.org/10.1016/j.ecoinf.2013.11.004
Gan, H., Zhang, J., Towsey, M., Truskinger, A., Stark, D., van Rensburg, B. J., Li, Y., & Roe, P. (2020). Data selection in frog chorusing recognition with acoustic indices. Ecological Informatics, 60. https://doi.org/10.1016/j.ecoinf.2020.101160
Gasc, A., Gottesman, B. L., Francomano, D., Jung, J., Durham, M., Mateljak, J., & Pijanowski, B. C. (2018). Soundscapes reveal disturbance impacts: biophonic response to wildfire in the Sonoran Desert Sky Islands. Landscape Ecology, 33(8), 1399–1415. https://doi.org/10.1007/s10980-018-0675-3
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: A review. Environmental Health: A Global Access Science Source, 12(1). https://doi.org/10.1186/1476-069X-12-43
Hornikx, M., Dohmen, M., Conen, K., van Hooff, T., & Blocken, B. (2018). The wind effect on sound propagation over urban areas: Predictions for generic urban sections. Building and Environment, 144, 519–531. https://doi.org/10.1016/j.buildenv.2018.08.041
Hu, Y., & Cardoso, G. C. (2010). Which birds adjust the frequency of vocalizations in urban noise? Animal Behaviour, 79(4), 863–867. https://doi.org/10.1016/j.anbehav.2009.12.036
Isaksson, C. (2010). Pollution and its impact on wild animals: A meta-analysis on oxidative stress. EcoHealth, 7(3), 342–350. https://doi.org/10.1007/s10393-010-0345-7
Kasten, E. P., Gage, S. H., Fox, J., & Joo, W. (2012). The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics, 12, 50–67. https://doi.org/10.1016/j.ecoinf.2012.08.001
Kimura, R., Traber, L. D., Herndon, D. N., Linares, H. A., Lubbesmeyer, H. J., & Traber, D. L. (1988). Increasing duration of smoke exposure induces more severe lung injury in sheep. Journal of Applied Physiology, 64(3), 1107–1113. https://doi.org/10.1152/JAPPL.1988.64.3.1107
Lee, B. P. Y. H., Davies, Z. G., & Struebig, M. J. (2017). Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia. Environmental Research Letters, 12(9). https://doi.org/10.1088/1748-9326/aa87ed
Lee, H., Choi, S.-G., Lee, K., Lee, J.-B., Lee, J.-H., & Choi, J.-H. (2015). A study on noise removal technique for acoustic data from a fishing boat. Journal of the Korean Society of Fisheries Technology, 51(3), 340–347. https://doi.org/10.3796/ksft.2015.51.3.340
Liao, C.-C., Shieh, B.-S., & Chen, C.-C. (2018). Air temperature influenced the vocal activity of birds in a subtropical forest in southern Taiwan. Taiwan Journal of Forest Science, 33(4), 291–304. https://www.researchgate.net/publication/332832677
Ligges, U., Krey, S., Mersmann, O., Schnackenberg, S., Guenard, G., Preusser, A., Thieler, A., Mielke, J., & Weihs, C. (2018). tuneR: Analysis of Music and Speech. https://CRAN.R-project.org/package=tuneR
Llusia, D., Márquez, R., Beltrán, J. F., Benítez, M., & do Amaral, J. P. (2013). Calling behaviour under climate change: Geographical and seasonal variation of calling temperatures in ectotherms. Global Change Biology, 19(9), 2655–2674. https://doi.org/10.1111/gcb.12267
Łowicki, D. (2019). Landscape pattern as an indicator of urban air pollution of particulate matter in Poland. Ecological Indicators, 97, 17–24. https://doi.org/10.1016/j.ecolind.2018.09.050
Machado, R. B., Aguiar, L., & Jones, G. (2017). Do acoustic indices reflect the characteristics of bird communities in the savannas of Central Brazil? Landscape and Urban Planning, 162, 36–43. https://doi.org/10.1016/j.landurbplan.2017.01.014
Matus, K., Nam, K. M., Selin, N. E., Lamsal, L. N., Reilly, J. M., & Paltsev, S. (2012). Health damages from air pollution in China. Global Environmental Change, 22(1), 55–66. https://doi.org/10.1016/j.gloenvcha.2011.08.006
McGrath, J. J., & Smith, D. L. (1984). Respiratory Responses To Nitrogen Dioxide Inhalation Subtitle: Nitrogen Dioxide. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 19(4), 417–431. https://doi.org/10.1080/10934528409375168
McWilliam, J. N., McCauley, R. D., Erbe, C., & Parsons, M. J. G. (2018). Soundscape diversity in the Great Barrier Reef: Lizard Island, a case study. Bioacoustics, 27(3), 295–311. https://doi.org/10.1080/09524622.2017.1344930
Metcalf, O. C., Barlow, J., Devenish, C., Marsden, S., Berenguer, E., & Lees, A. C. (2021). Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 12(3), 421–431. https://doi.org/10.1111/2041-210X.13521
Miyamoto, Y. (1975). Kankyo osen no shihyo to siteno dobutsu kisetsu. Kanso-kuritsu kara mita nihon no osen bunpu (Animal phenology as an indicator of environmental pollution: Distribution of environmental pollution in Japan seen from frequency of observation). Tokyo Kanku Chiho Kisho Kenkyukai-Shi (Geophysical Notes, Tokyo District Meteorological Observations) , 8, 27–29.
Müller, S., Mitesser, O., Oschwald, L., Scherer-Lorenzen, M., & Potvin, C. (2022). Temporal Soundscape Patterns in a Panamanian Tree Diversity Experiment: Polycultures Show an Increase in High Frequency Cover. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.808589
Murphy, S. D., Ulrich, C. E., Frankowitz, S. H., & Xintaras, C. (1964). Altered Function in Animals Inhaling Low Concentrations of Ozone and Nitrogen Dioxide. American Industrial Hygiene Association Journal, 25(3), 246–253. https://doi.org/10.1080/00028896409342583
Newman, J. R. (1979). Effects of industrial air pollution on wildlife. Biological Conservation, 15, 181–190. https://doi.org/10.1016/0006-3207(79)90039-9
Newman, J. R., & Schreiber, R. K. (1984). Animals as Indicators of Ecosystem Responses to Air Emissions. Environmental Management, 8, 309–324. https://doi.org/https://doi.org/10.1007/BF01868030
Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators, 11(3), 868–873. https://doi.org/10.1016/j.ecolind.2010.11.005
Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L., & Krause, B. L. (2011). What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 26(9), 1213–1232. https://doi.org/10.1007/s10980-011-9600-8
Rajan, S. C., Athira, K., Jaishanker, R., Sooraj, N. P., & Sarojkumar, V. (2019). Rapid assessment of biodiversity using acoustic indices. Biodiversity and Conservation, 28(8–9), 2371–2383. https://doi.org/10.1007/s10531-018-1673-0
Retamosa Izaguirre, M. I., & Ramírez-Alán, O. (2018). Acoustic indices applied to biodiversity monitoring in a Costa Rica dry tropical forest. Journal of Ecoacoustics, 2(1), 1–1. https://doi.org/10.22261/jea.tnw2np
Ross, S. R. P. J., Friedman, N. R., Dudley, K. L., Yoshimura, M., Yoshida, T., & Economo, E. P. (2018). Listening to ecosystems: data-rich acoustic monitoring through landscape-scale sensor networks. Ecological Research, 33(1), 135–147. https://doi.org/10.1007/s11284-017-1509-5
Ross, S. R. P. J., Friedman, N. R., Yoshimura, M., Yoshida, T., Donohue, I., & Economo, E. P. (2021). Utility of acoustic indices for ecological monitoring in complex sonic environments. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107114
Sánchez-Giraldo, C., Bedoya, C. L., Morán-Vásquez, R. A., Isaza, C. V., & Daza, J. M. (2020). Ecoacoustics in the rain: understanding acoustic indices under the most common geophonic source in tropical rainforests. Remote Sensing in Ecology and Conservation, 6(3), 248–261. https://doi.org/10.1002/rse2.162
Sanderfoot, O. V., Bassing, S. B., Brusa, J. L., Emmet, R. L., Gillman, S. J., Swift, K., & Gardner, B. (2021). A review of the effects of wildfire smoke on the health and behavior of wildlife. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac30f6
Sanderfoot, O. V., & Gardner, B. (2021). Wildfire smoke affects detection of birds in Washington State. Condor, 123(3). https://doi.org/10.1093/ornithapp/duab028
Sanderfoot, O. V., & Holloway, T. (2017). Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environmental Research Letters, 12(8). https://doi.org/10.1088/1748-9326/aa8051
Schmidt, M. F., Mclean, J., & Goller, F. (2012). Breathing and vocal control: The respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds. Experimental Physiology, 97(4), 455–461. https://doi.org/10.1113/expphysiol.2011.058669
Simone-Freilicher, E. (2008). Recurrent smoke-induced respiratory infections in a ruby blue-headed pionus parrot (Pionus menstruus rubrigularis). Journal of Avian Medicine and Surgery, 22(2), 138–145. https://doi.org/10.1647/2005-034R.1
Slama, R., Darrow, L., Parker, J., Woodruff, T. J., Strickland, M., Nieuwenhuijsen, M., Glinianaia, S., Hoggatt, K. J., Kannan, S., Hurley, F., Kalinka, J., Šrám, R., Brauer, M., Wilhelm, M., Henrich, J., & Ritz, B. (2008). Meeting report: Atmospheric pollution and human reproduction. Environmental Health Perspectives, 116(6), 791–798. https://doi.org/10.1289/ehp.11074
Sram, R. J., Jr, F. B., & Paolo, S. (1993). Air pollution and daily mortality in residential areas of Beijing, China. Arch Environ Health, 329, 1010–1014.
Sueur, J., Aubin, T., & Simonis, C. (2008). Equipment review: Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213–226. https://doi.org/10.1080/09524622.2008.9753600
Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100(4), 772–781. https://doi.org/10.3813/AAA.918757
Thierry M. Work. (2022). Pollution and Wildlife Health. Wildlife Population Health, 177–186. https://doi.org/https://doi.org/10.1007/978-3-030-90510-1
Tian, X., Cui, K., Sheu, H. L., Hsieh, Y. K., & Yu, F. (2021). Effects of rain and snow on the air quality index, PM2.5 levels, and dry deposition flux of PCDD/Fs. Aerosol and Air Quality Research, 21(8). https://doi.org/10.4209/aaqr.210158
Tully, T. N. (1995). Avian Respiratory Diseases: Clinical Overview. Source: Journal of Avian Medicine and Surgery, 9(3), 162–174.
Villanueva-Rivera, L. J., & Pijanowski, B. C. (2018). soundecology: Soundscape Ecology. https://CRAN.R-project.org/package=soundecology
Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J., & Pekin, B. (2011). A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26(9), 1233–1246. https://doi.org/10.1007/s10980-011-9636-9
Wang, H. K., Huang, C. H., Chen, K. S., & Peng, Y. P. (2010). Seasonal variation and source apportionment of atmospheric carbonyl compounds in Urban Kaohsiung, Taiwan. Aerosol and Air Quality Research, 10(6), 559–570. https://doi.org/10.4209/aaqr.2010.07.0059
Weiss, A. T. A., Graf, C., Gruber, A. D. D., & Kohn, B. (2011). Leukoencephalomalacia and laminar neuronal necrosis following smoke inhalation in a dog. Veterinary Pathology, 48(5), 1016–1019. https://doi.org/10.1177/0300985810384412
Wu, S. H., Chang, H. W., Lin, R. S., & Tuanmu, M. N. (2022). SILIC: A cross database framework for automatically extracting robust biodiversity information from soundscape recordings based on object detection and a tiny training dataset. Ecological Informatics, 68. https://doi.org/10.1016/j.ecoinf.2021.101534
交通部中央氣象署. (2022). 觀測資料查詢系統. https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
行政院環境部. (2021). 空氣品質監測網. https://airtw.moenv.gov.tw/