研究生: |
黃立伍 Hwung, Lee Woo |
---|---|
論文名稱: |
線切割放電加工沃斯回火球墨鑄鐵的機械性質及變質層研究 A Study on the Remelted Layer and Mechanical Properties of Wire- |
指導教授: |
施登士
Shih, Teng-Shih 張晉昌 Chang, Jin-Chung |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
畢業學年度: | 84 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 沃斯回火 、球墨鑄鐵 、變質層 、線切割放電加工 |
英文關鍵詞: | austemper, ductile iron, remelted layer, Wire-EDM |
論文種類: | 學術論文 |
相關次數: | 點閱:296 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為建立ADI ( austempered ductile iron )的加工資料庫,以
非傳統線切割放電加工( Wire-EDM )來取代傳統的械械加工法。實驗材料
有三批,皆經最佳韌性與最佳強度、硬度組合的溫度條件下(以機械性質
測試得知)進行沃斯回火恆溫熱處理。實驗結果顯示,縮孔、鑄疵等缺陷
對ADI機械性質具嚴重與不利的影響外,對線切割放電加工亦會造成放電
集中而斷線,最後無法加工。在線切割放電加工特性方面:(一)ADI加工
後的表面粗糙度隨放電加工參數的放電時間(on time)值增加而變大,放
電表面與一般加工後之模具鋼不同且較差,有著相當多的空洞與石墨汽化
後凹坑;(二)以迴歸模擬預測ADI的線切割放電加工速度,其影響因素的
重要性依序是:工作物厚度、放電時間、床台進給率、母材的球墨數及
ADI的殘留沃斯田鐵量;(三)線切割放電加工時,需調整銅線在不斷線前
提下為最大張力、加工液噴嘴壓力及適當加工液的電阻係數等放電加工參
數,並使成最佳的組合,方能使鼓形引起的中央切割部尺寸凹陷問題減至
最低,以達精密加工的目的。ADI經線切割放電加工後,其表面的軟化變
質層與雕模放電加工所產生的硬化層不同外,在OM、Hv和SEM觀察其厚度
尺寸也有所不同,且切割ADI時產生大量氣泡的攪拌使變質層厚度比切割
SKD者較小外,變質層及鄰接區域的微結構也改變,使材料的衝擊韌性降
低。材料原為最佳韌性沃斯回火溫度(356~363。C)熱處理時的衝擊破斷面
扭曲變形,衝擊值愈高斷面扭曲變形愈嚴重,斷裂方向為四十五度最大剪
應力方向;而沃斯回火溫度(300。C)熱處理時,有理想的硬度、強度組合
,其衝擊後的斷面為垂直九十度的劈裂破壞。
The purpose of this study is to build machining data base of
ADI, in order to replace traditional machining with non-
traditional machining of Wire-EDM. Three types of ductile irons
were used to develope ADIs of the optimum toughness, strength
and hardness via different austempering treatments. Results
showed that not only defects of materials casting plausibly was
disadvantages to mechanical properties of ADIs but also led to
wire-breakage as machining of Wire-EDM.The effects of ADI on the
characteristics of machinability of Wire-EDM as below: (1) With
increasing on time of cutting conditions, the surface roughness
of ADIs increases. The Wire-EDMd surface of ADIs was rougher
than that of SKD due to microvoids forming of decarburization
and vaporization of graphite nodules at remelted layer of ADIs;
(2) The factor's order of cutting feedrate for ADIs measured by
simulated regression as followed: thickness of the workpiece, on
time, feedrate override of the table, nodule counts of
materials, retained austenite content; (3) In order to acquire
the precision of workpieces by setting higher water flow rate,
resistivity of dielectric fluid and wire tension prior to wire-
breakage. The thickness and hardness distributions of
remelted layer in cross-sectional area of Wire-EDMd surface
differed from that of EDM. The dimension of remelted layer of
ADIs in cross-sectional area of Wire-EDMd surface was not as the
same as in terms of measuring instruments such as OM, Hv and
SEM. Although there was the thinner distributions of ADI than
that of SKD due to strong stirring of more bubbles forming, the
changed microstructure of remelted layer and adjacency
deteriorated impact energy of mechanical properties. The more
impact energy, the more severe distorted cross-section cracked
from 45。angles of maximum shear stress as ADIs austempered at
356~363。C; the flat fracture front of cleavage acquired as
austempered at 300。C the same as brittle type.
The purpose of this study is to build machining data base of