簡易檢索 / 詳目顯示

研究生: 李宗翰
Tsung-Han Lee
論文名稱: 矽奈米元件之量子性質
Quantum characteristics in silicon nanostructure devices
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 庫倫阻斷阿哈諾夫-波姆效應隨機電報信號
英文關鍵詞: Coulomb blockade, Aharonov-Bohm effect, random telegraph signal
論文種類: 學術論文
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們採用標準半導體製程技術製作不同形狀的矽奈米結構,並使用在液體氦溫度的四點探針法量測介觀的量子特性。在調控的奈米環元件的電導圖譜觀察到庫侖阻斷特性,並於外加高磁場在元件上時觀測到具有B =0.178T的週期性Aharonov-Bohm振盪。此元件之量子點的等效直徑估計為29.8 nm,而相位的相干長度估計大於270 nm。施加適當的外加電場於摻雜雜質的矽奈米環元件可同時觀測到量子侷限效應和干涉效應。
    此外,透過PADOX方法製造環繞式閘極的n型摻雜多晶矽奈米線電晶體。藉由調節閘極電壓可觀測到庫侖阻斷效應和隨機電報信號,此現象顯示在具環繞式閘極的矽奈米線電晶體其庫侖振盪特性乃因其傳輸通道存在二能級的俘獲結構。在變動的磁場中,多條曲線重疊的微分電導區域表示藉由砷的自旋相關的自旋散射,顯示了磁性雜質之弱的雙電子之單態-三重態分裂。
    再次,我們使用了SIMOX SOI晶圓製造矽雙量子阱。測量的負微分電導表示大的電場能誘導出在矽量子阱誘導。當VDS > 0,其穿隧電流比VDS < 0的穿隧電流大,並且是大一個數量級,此現象表示在量子阱的勢壘是不對稱的。根據Wigner和Landauer理論估算所獲得傳輸係數,顯示該電子入射勢壘阻比電子流出之勢壘阻厚。然後利用測不准原理,估算的諧振狀態之壽命符合雙量子阱轉變為單量子阱的能帶模型。
    總之,我們證實了不同幾何形狀結構的矽元件和施以適當的外加電場,可強力的影響電子於介觀尺度結構的傳輸行為。這些研究將有益於奈米結構中電子相干傳輸和多電子耦合的研究。

    We fabricated silicon nano-structures of diverse shapes by using the standard semiconductor techniques and used these devices to investigate the mesoscopic quantum properties. The measurements are conducted by the four-terminal probe method at the liquid Helium temperature. We observed the Coulomb blockade effect in the conductance spectrum of the nanoring device tuned and the periodic Aharonov-Bohm oscillations with B = 0.178 T were observed when high-magnetic fields were applied to the device. The equivalent diameter of the quantum dots was estimated to be 29.8 nm and the phase coherence length was longer than 270 nm. The quantum confinement and interference effects coexisted in the doped silicon nano ring, depending on the geometry of the electric field.
    Moreover, we fabricated an n-doped poly-silicon nanowire transistor with the GAA via the PADOX method. The Coulomb blockade effect and random telegraph signal were observed in the silicon nanowire under a tunable gate voltage suggesting that the two-level trapping state depend on the Coulomb oscillations in the transport channel. Under variable magnetic field, the differential conductance regions of overlapping multiple curves indicate the spin-dependent scattering by the spin of arsenic. These results suggest this scattering can be attributed to the magnetic impurity consisting weak the 2-electron singlet-triplet splitting states.
    Again, we used the SIMOX SOI wafer to fabricate a silicon double quantum wells. The appearance of the negative differential conductance indicated that the silicon quantum well was induced by the large electric field, and the tunneling currents of the VDS > 0 region is one order of magnitude larger than those of the VDS < 0 region which revealed the asymmetric barriers in the quantum well. By using to the Wigner and Landauer approaches, the transmission coefficients were estimated and indicated the incident-barrier is thicker than the transmission-barrier. Then the resonant state lifetime was estimated by uncertainty relation which corresponded to the model of the double-well to transform single-well.
    We confirmed the available geometry of the silicon device and electric field strongly affects the mesoscopic electron transport behaviors. These investigations provide the benefit to study electron coherent transport and many-electron coupling in the nano-structures.

    1 Introduction ------------------------------------------------------ 1 2 Theoretical concepts -------------------------------------------- 4 2.1 Quantum dot ------------------------------------------------- 5 2.2 Aharonov-Bohm effect ------------------------------------ 10 3 Design and experiments -------------------------------------- 13 3.1 Device manufacture process ------------------------------ 13 3.1.1 Silicon quantum nanoring --------------------------- 15 3.1.2 GAA poly-silicon nanowire ------------------------- 18 3.1.3 SOI quantum wells ----------------------------------- 22 3.2 Device measurements ------------------------------------- 25 4 Results and discussion ---------------------------------------- 28 4.1 Silicon quantum nanoring device ------------------------ 28 4.2 GAA poly-silicon nanowire device ---------------------- 37 4.3 SIMOX quantum wells ------------------------------------ 47 5 Conclusions ------------------------------------------------------ 57 List of abbreviation ---------------------------------------------- 59 List of publication ------------------------------------------------ 60 Bibliography ------------------------------------------------------- 61

    [1] A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. B 73 205326 (2006).
    [2] A. Fuhrer, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 93 176803 (2004).
    [3] K. W. Chen and C. R. Chang, Phys. Rev. B 78 235319 (2008).
    [4] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. B 68 235304 (2003).
    [5] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88 256806 (2002).
    [6] K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Phys. Rev. B 70 035319 (2004).
    [7] Y. Nam, J. S. Yoo, Y. W. Park, N. Lindvall, T. Bauch, and A. Yurgens, Carbon 50 5562 (2012).
    [8] J. Wurm, M. Wimmer, H. U. Baranger, and K. Richter, Semicond. Sci. Technol. 25 034003 (2010).
    [9] K. Zhang and W. Z. Shen, Appl. Phys. Lett. 92 083101 (2008).
    [10] F. A. Zwanenburg, Cewm van Rijmenam, Y. Fang, C. M. Lieber, and L. P. Kouwenhoven, Nano Lett. 9, 1071-1079 (2009).
    [11] S. C. Rustagi, N. Singh, Y. F. Lim, G. Zhang, S. Wang, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electron Device Lett. 28, 909 (2007).
    [12] Y. S. Sun, Rusli, and N. Singh, IEEE Trans. Nanotechnol. 10, 1214 (2011).
    [13] B. H. Hong, L. Choi, Y. C. Jung, S. W. Hwang, K. H. Cho, K. H. Yeo, D. W. Kim, G. Y. Jin, D. Park, S. H. Song, Y. Y. Lee, M. H. Son, and D. Ahn, IEEE Trans. Nanotechnol. 9, 754 (2010).
    [14] J. Zhuge, L. L. Zhang, R. S. Wang, R. Huang, D. W. Kim, D. Park, and Y. Y. Wang, Appl. Phys. Lett. 94, 083503 (2009).
    [15] H. Sellier, G. P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, and S. Biesemans, Phys. Rev. Lett. 97, 206805 (2006).
    [16] G. P. Lansbergen, Y. Ono, and A. Fujiwara, Nano Lett. 12, 763 (2012).
    [17] G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, Nat. Phys. 4, 656 (2008).
    [18] M. F. Gonzalez-Zalba, D. Heiss, and A. J. Ferguson, New J. Phys. 14, 023050 (2012).
    [19] G. P. Lansbergen, G. C. Tettamanzi, J. Verduijn, N. Collaert, S. Biesemans, M. Blaauboer, and S. Rogge, Nano Lett. 10, 455 (2010).
    [20] R. Rahman, J. Verduijn, N. Kharche, G. P. Lansbergen, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, Phys. Rev. B 83, 195323 (2011).
    [21] R. Rahman, G. P. Lansbergen, S. H. Park, J. Verduijn, G. Klimeck, S. Rogge, and L. C. L. Hollenberg, Phys. Rev. B 80, 165314 (2009).
    [22] B. Roche, E. Dupont-Ferrier, B. Voisin, M. Cobian, X. Jehl, R. Wacquez, M. Vinet, Y. M. Niquet, and M. Sanquer, Phys. Rev. Lett. 108, 206812 (2012)
    [23] K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama, Phys. Rev. Lett. 96, 236801 (2006).
    [24] K. Takashina, Y. Niida, V. T. Renard, A. Fujiwara, T. Fujisawa, K. Muraki, and Y. Hirayama, Phys. Rev. Lett. 106, 196403 (2011).
    [25] J. Noborisaka, K. Nishiguchi, H. Kageshima, Y. Ono, and A. Fujiwara, Appl. Phys. Lett. 96, 112102 (2010).
    [26] G. P. Lansbergen, R. Rahman, J. Verduijn, G. C. Tettamanzi, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, Phys. Rev. Lett. 107, 136602 (2011).
    [27] Jorden Adriaan VAN DAM, Quantum transport in semiconductor nanowires, edited by Jorden van DAM, 5-9, (2006).
    [29] Daniel T. Larson, How to Talk to a Physicist: Groups, Symmetry, and Topology, edited by Daniel T. Larson, 39-43, (2005).
    [29] M. Nagase, S. Horiguchi, K. Shiraishi, A. Fujiwara, and Y. Takahashi, J. Electroanal. Chem. 559, 19 (2003).
    [30] Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase, IEEE Trans. Electron Devices 47, 147 (2000).
    [31] K. Takashina, A. Fujiwara, S. Horiguchi, Y. Takahashi, and Y. Hirayama, Phys. Rev. B 69, 161304 (2004).
    [32] K. Takashina, M. Brun, T. Ota, D. K. Maude, A. Fujiwara, Y. Ono, Y. Takahashi, and Y. Hirayama, Phys. Rev. Lett. 99, 036803 (2007).
    [33] A. Tilke, R. H. Blick, and H. Lorenz, J. Appl. Phys. 90, 942 (2001).
    [34] X. G. Zhang, Z. H. Fang, K. J. Chen, J. Xu, and X. F. Huang, Nanotechnology 22, 035302 (2011).
    [35] H. Sellier, G. P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, and S. Biesemans, Phys. Rev. Lett. 97, 206805 (2006).
    [36] M. G. Tanner, P. Chapman, G. Podd, and D. A. Williams, J. Appl. Phys. 106, 043713 (2009).
    [37] J. Moser and A. Bachtold, Appl. Phys. Lett. 95, 173506 (2009).
    [38] F. Sfigakis, A. C. Graham, K. J. Thomas, M. Pepper, C. J. B. Ford, and D. A. Ritchie, J. Phys.-Condes. Matter 20, 164213 (2008).
    [39] G. Frucci, L. Di Gaspare, F. Evangelisti, E. Giovine, A. Notargiacomo, V. Piazza, and F. Beltram, Phys. Rev. B 81, 195311 (2010).
    [40] T. C. G. Reusch, A. Fuhrer, M. Fuchsle, B. Weber, and M. Y. Simmons, Appl. Phys. Lett. 95, 032110 (2009).
    [41] V. A. Tkachenko, A. A. Bykov, D. G. Baksheev, O. A. Tkachenko, L. V. Litvin, A. V. Latyshev, T. A. Gavrilova, A. L. Aseev, O. Estibals, and J. C. Portal, J. Exp. Theor. Phys. 97, 317 (2003).
    [42] A. A. Bykov, D. G. Baksheev, L. V. Litvin, V. P. Migal, E. B. Ol'shanetskii, M. Casse, D. K. Maude, and J. C. Portal, Jetp Lett. 71, 434 (2000).
    [43] A. Fuhrer, S. Luescher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Nature 413, 822 (2001).
    [44] Taylor & Francis Group, Silicon Nano electronics, edited by Shunri Oda, David Ferry, (2006), 186-187.
    [45] E. Prati, M. Belli, M. Fanciulli, and G. Ferrari, Appl. Phys. Lett. 96, 113109 (2010).
    [46] R. de Sousa, C. C. Lo, and J. Bokor, Phys. Rev. B 80, 045320 (2009).
    [47] C. C. Lo, V. Lang, R. E. George, J. J. L. Morton, A. M. Tyryshkin, S. A. Lyon, J. Bokor, and T. Schenkel, Phys. Rev. Lett. 106, 207601 (2011).
    [48] R. Jansen, B. C. Min, and S. P. Dash, Nat. Mater. 9, 133 (2010).
    [49] A. Baena, A. L. Saraiva, B. Koiller, and M. J. Calderon, Phys. Rev. B 86, 035317 (2012).
    [50] Y. Guo, B. L. Gu, J. Z. Yu, Z. Zeng, and Y. Kawazoe, J. Appl. Phys. 84, 918 (1998).
    [51] J. E. Hasbun, J. Phys.-Condes. Matter 15, R143 (2003).
    [52] J. Noborisaka, K. Nishiguchi, Y. Ono, H. Kageshima, and A. Fujiwara, Appl. Phys. Lett. 98, 033503 (2011).
    [53] P. K. Mahapatra, P. Panchadhyayee, S. P. Bhattacharya, and A. Khan, Physica B 403, 2780 (2008).
    [54] S. S. Allen and S. L. Richardson, Phys. Rev. B 50, 11693 (1994).
    [55] A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 1929 (1990).
    [56] B. Ricco and M. Y. Azbel, Phys. Rev. B 29, 1970 (1984).
    [57] P. Panchadhyayee, R. Biswas, A. Khan, and P. K. Mahapatra, J. Appl. Phys. 104, 084517 (2008).

    QR CODE