研究生: |
張安妤 Chang, An-Yu |
---|---|
論文名稱: |
智慧農業科技之擴散與採用初探 Exploring Farmers' Understanding and Adoption of Smart Farming Technology: Factors and Motivations for Innovation in the Industry |
指導教授: |
印永翔
Ying, Yung-Hsiang |
口試委員: |
印永翔
Ying, Yung-Hsiang 楊淑珺 Yang, Shu-Chun S. 何宗武 Ho, Tsung-Wu |
口試日期: | 2023/05/09 |
學位類別: |
碩士 Master |
系所名稱: |
高階經理人企業管理碩士在職專班(EMBA) Executive Master of Business Administration |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 智慧農業 、智慧農業科技 、創新擴散 、MDDDII概念模型 、資通訊科技 |
英文關鍵詞: | Smart Agriculture, Smart Farming Technology, Innovation diffusion, MDDDII conceptual model, Information and Communication Technology |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202300549 |
論文種類: | 學術論文 |
相關次數: | 點閱:90 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷和糧食安全是農業永續發展的重要議題,聯合國糧食與農業組織倡議的氣候智慧農業,已吸引國際產官學界關注。智慧科技在農業發展中的應用,已成為當前趨勢。本研究旨在探討臺灣農民對智慧農業科技的擴散效果及採用行為,以及其間的關聯性和影響效果。
本研究主要依據於農民聯誼會、農業相關科系校友、FB各農業社團、LINE各農業社團所發放的網路問卷調查,共回收210份有效樣本。分析方法分別採用線性迴歸、Poisson迴歸及工具變數迴歸進行。
研究結果顯示,臺灣農民達八成五以上有聽過智慧農業,這顯示智慧農業在農民之間的確存在「自然擴散」及「計畫傳播」的效果,並且在一定程度上被農民視為提高社會地位的象徵。傳播效果中以農友相互推薦帶來的溝通及影響是提升農民「採用意願」的重要途徑之一;但在「計畫傳播」的擴散效果中,僅有學校教育的宣傳推廣能夠在一定程度上促使臺灣農民實際「採用」智慧農業科技;其他管道如農業展覽會,政府農業相關培訓推廣等反而帶來負面效果。
從「採用」智慧農業科技的角度來觀察,有四成臺灣農民至少使用過一種智慧農業科技。採用者集中於男性、種植蘭花、農地面積大者;其中較令人意外的是,相較於承租土地的農民,反而自有土地的農民,較少採用智慧農業科技。
「氣候變遷」、「技術效益」和「社會地位」等外部環境因素並未顯著影響農民的決策。這可能意味著在面對新技術的採用時,農民的考慮因素較為多元,而非僅受外部環境的影響,而這些因素對於農民的決策更為重要。
總體而言,本研究對智慧農業科技在臺灣農業中的擴散與採用進行了初步探討,揭示了智慧農業科技在臺灣推廣所面臨的困難情況。未來研究可以由結合不同性質的研究方法、擴展研究範疇、深化研究對象等方面著手,推動智慧農業的發展需要政府、產業界、學術界和農民共同努力;達到農業的可持續性!
Climate change and food security are critical concerns in achieving sustainable agriculture. The climate smart agriculture advocated by the Food and Agriculture Organization of the United Nations has attracted the attention of international industry, government and academia. The application of smart technology in agricultural development has become the current trend. The purpose of this study is to investigate the diffusion effect and adoption behavior of Taiwanese farmers towards smart farming technology, as well as the correlation and influence of these factors.
To gather data, we distributed online questionnaires to various agriculture-related channels, such as the Farmers Association, alumni of agriculture-related departments, and agricultural communities on Facebook and LINE, and collected 210 valid samples. We analyzed the questionnaires using linear regression, Poisson regression, and instrumental variables (2SLS) regression.
Our results show that over 85% of Taiwanese farmers had heard of smart farming, indicating the "Diffusion" and "Dissemination" effects among farmers. Moreover, farmers regarded it as a symbol of improving social status to some extent. One of the important ways to increase farmers' "adoption willingness" is through communication and influence brought about by mutual recommendation among farmers. However, among the diffusion effects of "Dissemination", only the publicity and promotion of school education can, to a certain extent, encourage Taiwanese farmers to actually "adopt" smart farming technology; other channels, such as agricultural exhibitions and government agricultural-related training and promotion, had negative effects.
From the perspective of "adopting" smart farming technology, 40% of Taiwanese farmers have used at least one type of smart farming technology. It is surprising that farmers who own their own land are less likely to use smart farming technology than those who lease their land.
Outer context factors such as "climate change", "technological efficiency" and "social status" did not significantly influence farmers' decision making. This may imply that when faced with the adoption of new technologies, farmers' considerations are more diverse rather than solely influenced by the external environment, and that other factors are more important to farmers' decisions.
Overall, this study presents a preliminary examination/investigation on the diffusion and adoption of smart agricultural technology in Taiwan, revealing the difficulties faced in the promotion of smart farming technology. Future research can incorporate diverse research methodologies, expand the scope of the research, and conduct deeper investigation on study subjects (farmers). Achieving sustainable agriculture and promoting the development of smart agriculture requires the joint efforts of the government, the industry, academia, and farmers.
Anselmi, A., Bredemeier, C., Federizzi, L., & Molin, J. (2014). Factors related to adoption of precision agriculture technologies in southern Brazil. Retrieved March, 12, 2018.
Batte, M. T., & Arnholt, M. W. (2003). Precision farming adoption and use in Ohio: case studies of six leading-edge adopters. Computers and electronics in agriculture, 38(2), 125-139.
Binswanger, H. (1986). Agricultural Mechanization: A Comparative Historical Perspective. World Bank Research Observer, 1(1), 27-56. https://doi.org/https://academic.oup.com/wbro/issue
Chen, L.-d., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719. https://doi.org/https://doi.org/10.1016/S0378-7206(01)00127-6
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.
Dearing, J. W., & Cox, J. G. (2018). Diffusion of innovations theory, principles, and practice. Health affairs, 37(2), 183-190.
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418(6898), 700-707. https://doi.org/10.1038/nature01019
FAO. (2009). How to feed the world in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (Food and Agriculture Organization)
Gao, Y., Zhao, D., Yu, L., & Yang, H. (2020). Influence of a new agricultural technology extension mode on farmers' technology adoption behavior in China. Journal of Rural Studies, 76, 173-183. https://doi.org/10.1016/j.jrurstud.2020.04.016
Goedde, L., Katz, J., Ménard, A., & Revellat, J. (2020). Agriculture’s connected future: How technology can yield new growth. McKinsey and Company.
Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations. The Milbank Quarterly, 82(4), 581-629. https://doi.org/10.1111/j.0887-378x.2004.00325.x
Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/10.1016/j.jbi.2009.07.002
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
Kountios, G., Ragkos, A., Bournaris, T., Papadavid, G., & Michailidis, A. (2018). Educational needs and perceptions of the sustainability of precision agriculture: survey evidence from Greece. Precision Agriculture, 19(3), 537-554. https://doi.org/10.1007/s11119-017-9537-2
Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2-17. https://doi.org/10.1007/s11119-009-9150-0
Lee, Y., & Kozar, K. A. (2008). An empirical investigation of anti-spyware software adoption: A multitheoretical perspective. Information & Management, 45(2), 109-119.
Lillestrøm, V. (2021). An exploration of post-adoption evaluation and factors influencing IoT technology adoption in agriculture: Case study results from Norwegian agriculturists
Nasirahmadi, A., & Hensel, O. (2022). Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors, 22(2), 498. https://doi.org/10.3390/s22020498
Nunnally, J. C. (1978). Psychometric theory (2d ed.). McGraw-Hill.
Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process [Article]. Precision Agriculture, 20(6), 1292-1316. https://doi.org/10.1007/s11119-019-09653-x
Rogers, E. M. (2003). Diffusion of Innovations, 5th Edition. Free Press. https://books.google.com.tw/books?id=9U1K5LjUOwEC
Shahbandeh, M. (2022). Forecast market value of smart farming worldwide in 2020 to 2026. Retrieved 2023/2/19 from https://www.statista.com/statistics/720062/market-value-smart-agriculture-worldwide/
Spielman, D. J., & Birner, R. (2008). How innovative is your agriculture?: Using innovation indicators and benchmarks to strengthen national agricultural innovation systems. World Bank Washington, DC, USA.
Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302-312. https://doi.org/https://doi.org/10.1016/j.compedu.2008.08.006
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540. https://doi.org/10.1108/10662241111176353
中華民國內政部. (2021). 地方行政區域簡介. https://www.moi.gov.tw/cp.aspx?n=13844
張育瑋, 許秉瑜, 楊清淼, & 洪吟芳. (2020). 影響雲端ERP系統轉換意願之因素:社會影響和創新擴散之觀點 [Switching Intention of Cloud ERP System: The Roles of Social Influence and Innovation Diffusion]. 電子商務學報, 22(1), 29-59. https://doi.org/10.6188/jeb.202006_22(1).0002
張芳全. (2008). 問卷就是要這樣編 (2 ed.). 心理出版社股份有限公司.
林宸頡, 黃., 李明鴻. (2023, 2023/5/6). 行政院通過部會改組 農委會升格「農業部」. 台視新聞網. Retrieved 2023/5/6 from https://news.ttv.com.tw/news/11105060016000N
林玉偉, 梁朝雲, & 葉哲愷. (2020). 影響青年農民接受物聯網科技的關鍵因素及其效果 [Factors and Their Effects of Influencing the IoT Technology Acceptance by Young Farmers]. 農民組織學刊(22), 1-25. https://doi.org/10.6655/jfo.202002_(22).0001
楊上禾, 陳海菁, & 萬鍾汶. (2018). 臺灣設施農民擴建意願與採用決策分析 [Facility Farmers' Willingness-to-Expand for their Greenhouse and Adopting Decision in Taiwan]. 應用經濟論叢(103), 241-273. https://doi.org/10.3966/054696002018060103007
楊少強, & 楊乃錚. (2022, 2022/6/29). 新糧食戰爭-吃不起的未來!比缺晶片更大的危機. 商業週刊, (1807). https://www.businessweekly.com.tw/focus/indep/6007721
洪宏毅, & 林子傑. (2019). 農機補助政策與執行現況 [Policy on Agri-machinery Subsidies and its Implementation]. 臺中區農業改良場特刊(139號), 53-63.
莊瑞雄. (2021). 智慧科技應用於農業產消實務之量化分析 (Publication Number 2021年) 國立臺灣大學]. AiritiLibrary.
蘇美惠. (2017). 農業e 化的行動 - 案例介紹 (行政院農業委會員主要國家農 業政策法規與經濟動態, Issue. https://reurl.cc/Rzyrn9
行政院科技會報辦公室. (2015). 行政院生產力4.0發展方案. https://pse.is/4xaxye
行政院農業委員會. (2015). 生產力4.0-農業. https://www.slideshare.net/secret/bJOZPpyR3nAojk
行政院農業委員會. (2023a, 2022/11/17). 農業就業人口. Retrieved 2023/2/18 from https://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_6_2.html
行政院農業委員會. (2023b). 農業就業人口按性別及年齡及從業身份別分. Retrieved 2023/2/18 from https://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_6_3_1.html
行政院農業委員會. (2023c). 農業統計-糧食供需指標. Retrieved 2023/2/18 from https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
行政院農業委員會農業試驗所智慧農業專案推動小組. (2023). 智農是什麼. Retrieved 2023/2/19 from https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J164373919378174143
行政院農業委員會農業金融局. (2022, 2022/9/29). 青壯年農民從農貸款要點. Retrieved 2023/2/19 from https://www.boaf.gov.tw/view.php?theme=agricultural_development&subtheme=&id=1
許仁弘, 鄭向農, 洪子淵, & 賴威延. (2021). 由國際數位轉型之發展談臺灣農業數位轉型契機. 經濟前瞻(198), 129-136.
邱皓政. (2019). 量化研究與統計分析: SPSS 與 R 資料分析範例解析. 五南圖書出版股份有限公司.
陳儷方. (2023, 2023/5/5). 行政院拍板農業部組織法草案 陳吉仲:擘劃臺灣農業下一個百年藍圖. 農傳媒. Retrieved 2023/5/5 from https://www.agriharvest.tw/archives/81281
陳寧. (2018, 2018/8/31). 荷蘭農業下一步 科技是糧食危機的唯一解方?. 我們的島. https://ourisland.pts.org.tw/content/3666
陳昱宏, 廖., 沈湯龍. (2020, 2020/9/25). 他山之石 可以攻錯:以色列的新農業發展經驗與臺灣的發展契機. 農傳媒. https://www.agriharvest.tw/archives/45552
陳駿季, & 楊智凱. (2017). 推動智慧農業-翻轉臺灣農業. 國土及公共治理季刊, 5(4), 104-111.