簡易檢索 / 詳目顯示

研究生: 吳旭展
Wu, Hsu-Chan
論文名稱: 在N型矽基板以鋁誘發多晶矽薄膜以及ZnO:Al(AZO)抗反射層之太陽能電池研究
A study of p-type polycrystalline silicon fabricated by Al-induced crystallization and ZnO:Al(AZO) ARC layer on photovoltaic applications
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 69
中文關鍵詞: 鋁誘發矽多晶矽AZO太陽能電池
英文關鍵詞: ZnO:Al(AZO), aluminum-induced crystallization, poly-crystalline silicon, solar cell
論文種類: 學術論文
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用射頻磁控濺鍍系統,分別濺鍍鋁、矽薄膜,經由熱退火方式,使鋁誘發矽形成p型多晶矽,於本質矽基板之上利用不同退火時間進而達到摻雜的目的;並及量測及分析p-type矽薄膜之電性。進而探討應用於n型矽基板上,製備成太陽能電池元件後並量測光電轉換特性。
    並研究ZnO:Al (AZO)薄膜濺鍍於塑膠基板上,在不同的薄膜厚度量測其薄膜的電特性及光特性,得到一ρ=4 x 10-4Ω-cm、μ=21 cm2/V·s、 n=6.4 x1020 1/cm3、可見光部分穿透率 75% 等特性於1100 nm之ZnO:Al (AZO)薄膜。
    最後分別使用AZO薄膜以及鋁製備於電極部分進行太陽能電池光電轉換量測,最終我們在Al/p-Si/n-Si wafer/Al 結構上獲得一開路電壓為0.41V,光電流為0.38 mA/cm2 ,轉換效率為0.1% 的太陽能光伏元件。

    In this work, we fabricated ZnO:Al(AZO)/p-polycrystalline-Si solar cells on n-type silicon wafer. The p-type polycrystalline silicon films were prepared by aluminum-induced crystallization and doping. First, we deposited Aluminum and amorphous silicon bilayers on intrinsic silicon wafer using a rf- sputtering system. We changed the annealing times of the aluminum-induced crystallization to get good conducting p-type polycrystalline-Si films, and then deposited them on n-type silicon wafers to fabricate the p-n junction solar cells.
    AZO thin films were grown on PET flexible plastic substrates at room temperature and optimize the growth conditions were optimized to improve the transparency and electrical properties. With the room-temperature growth conditions, the resistivity of 4.5  10-4 Ω cm, carrier concentration of 6.4  1020 cm-3, and transmittance of 75% for the 1100-nm-thick film were obtained.
    AZO and Al films have been used to be the front electrodes for the AZO(Al)/p-polycrystalline-Si/n-silicon-wafer structured solar cells. Finally, an open circuit voltage of 0.41 V, a photocurrent of 0.38 mA, and a photoelectric conversion of 0.1% for the solar cells are obtained.

    目錄 致 謝 IV 摘 要 V Abstract VI 第一章 序論 1 1-1 前言 1 1-2研究動機與目的 1 第二章 實驗原理 4 2-1 氧化鋅(ZnO)透明導電膜之發展及材料特性 4 2-2鋁金屬誘導矽結晶發展及原理 6 2-3濺鍍原理 8 2-4霍爾效應與四點探針量測[11] 11 2-5 X光繞射原理(XRD, X-ray diffraction)[13] 14 2-6原子力顯微鏡(Atomic Force Microscope,AFM)[33] 17 2-7 掃描式電子顯微鏡(SEM, Scanning Electron Microscope) [16][17] 19 2-8離子蝕刻[34] 23 2-9熱退火原理(Thermal Annealing)[35] 23 2-10 太陽能電池(Solar Cell)原理 [31][32] 24 第三章 實驗步驟與設備 31 3-1 AZO靶材製作 31 3-2 薄膜製備流程 32 3-3 濺鍍系統 32 3-4矽、鋁薄膜熱退火 35 3-5 化學機械研磨技術(CMP) 36 3-6 AFM 原子力顯微鏡 39 3-7元件製作 39 3-9 霍爾量測 42 3-10 元件光電流量測 44 第四章 實驗結果與討論 45 4-1 ZnO:Al(AZO)光電特性 45 4-2 p型矽鋁薄膜 51 4-3 化學機械研磨技術(CMP) 59 4-4 元件光電分析 61 第五章 結論 66 文獻回顧 67

    [1] 楊孟璇, “低溫濺鍍非晶相ZnO:Al”薄膜之研究”, 國立中山大學物理學系,碩士論,2009
    [2]勇威戎,”氧化鋅鋁薄膜製備及性質分析”東海大學化學工程與材料工程學系,碩士論文 2011
    [3] Hamad, Omima, et al. "Effect of thermal treatment in oxygen, nitrogen, and air atmospheres on the electrical transport properties of zinc oxide thin films." Thin Solid Films 489.1 (2005): 303-309.
    [4] Minami, Tadatsugu, Hidehito Nanto, and Shinzo Takata. "Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering." Jpn. J. Appl. Phys 23.5 (1984): L280-L282.
    [5] Barton, Paul B., and Priestley Toulmin. "The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems." Geochimica et Cosmochimica Acta 28.5 (1964): 619-640.
    [6] R. S. Wanger and W. C. Ellis, Appl. Phys. Lett., Vol. 4, 1964, pp. 89-90.
    [7] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul and S. R. Wenham, Appl. Phys. Lett. Vol. 73, 1998, pp. 3214.
    [8]鄭橋人,”透明導電膜氧化鋅摻雜鋁之成長與應用於矽薄膜太陽能電池之研究”,台灣師範大學光電科技所,碩士論文 2013
    [9] Nast, Oliver, et al. "Polycrystalline silicon thin films on glass by aluminum-induced crystallization." Electron Devices, IEEE Transactions on 46.10 (1999): 2062-2068.
    [10]Rigaku Mechatronics Co./Applications/Sputtering systems, http://en.rigakumechatronics.com/case /sputtering-systems.html,2011/07/09.
    [11]E.H.Putley,”The Hall effect and semiconductor physics”, New York , Dover Publications, 1968
    [12] http://www.hall-effect.eu/communities/0/000/001/106/510/images/589445.jpg
    [13] 林麗娟,”X光繞射原理及其應用”,工業材料,第八十六期,第100-109頁,1994。
    [14]羅聖全, “研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM” , 小奈米大世界
    [15] 林聖凱。2005。以微波電漿火炬製備可見光化光觸媒之研究。中原大學化學工程系碩士論文。桃園。
    [16] 陳義信。2001。冷壁式有機金屬化學氣相沈積法製備二氧化銥薄膜及其特性分析。國立台灣科技大學工程技術研究所,碩士論文。
    [17] 趙國興。2002。雷射拉曼光譜對鈀、銠與硫酸鈰反應之研究。中國文化大學應用化學研究所碩士論文
    [18]M.A. Green, Solar Cells: Operating Principles, Technology, and System Application, (1982).
    [19] Tauc, Jan, ed. Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
    [20]Davis, E. A., and NFf Mott. "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors." Philosophical Magazine 22.179 (1970): 0903-0922.
    [21] Tan, S. T., et al. "Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition." Journal of crystal growth 281.2 (2005): 571-576.
    [22] Ohyama, Masashi, Hiromitsu Kozuka, and Toshinobu Yoko. "Sol‐Gel Preparation of Transparent and Conductive Aluminum‐Doped Zinc Oxide Films with Highly Preferential Crystal Orientation." Journal of the American Ceramic Society 81.6 (1998): 1622-1632.
    [23] C. Becker, D. Amkreutz , T. Sontheimer , V. Preidel , D. Lockau, J. Haschke, L. Jogschies , C. Klimm , J.J. Merkel, P. Plocica , S. Steffens , B. Rech .” Polycrystalline silicon thin-film solar cells: Status and perspectives.” Solar energy materials &solar cells 119(2013)112-123
    [24]粘志成,2005 "製程條件對鋁誘發非晶矽薄膜結晶影響之研究”,崑山科技大學機械工程系,碩士論文
    [25] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters 4.5 (1964): 89-90.
    [26] Macdonald, Daniel, and L. J. Geerligs. "Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon." Applied Physics Letters 85.18 (2004): 4061-4063.
    [27] Glunz, S. W., et al. "Minority carrier lifetime degradation in boron-doped Czochralski silicon." Journal of Applied Physics 90.5 (2001): 2397-2404.
    [28] J. Schmidt, K. Bothe, R. Bock,N-type Silicon– the better material choice for industrial high-efficiency solar
    cells, 22nd European Photovoltaic Solar Energy Conference, 3-7 September 2007, Milan, Italy.
    [29] K. Bothe, J. Schmidt, and R. Hezel, Proc. 29th IEEE PVSC, New Orleans, USA (2002), p. 194.
    [30]Ben G.Streetman , Sanjay Kumar Banerjee。2008。半導體元件。東華書局。
    [31]郭浩中,郭守義,賴芳儀,蔡閔安。2012。”太陽能光電技術”。五南圖書出版股份有限公司。
    [32]翁閔航。2011。太陽能電池-原理、元件、材料、製程與檢測技術。東華書局。
    [33]黃英碩, “掃描探針顯微術原理與應用”,科儀新知二十六卷第四期
    [34]羅吉宗,2005,”薄膜科技與應用”,全華科技圖書股份有限公司
    [35] 楊佳慶,”利用聚焦離子束製作AlGaN/GaN奈米線之金氧半場效應電晶體”,中山大學物理研究所,碩士論文 2008
    [36] D. C. Reynolds, D. C. Look, B. Hogai, “Combined Effects of Screening and Band Gap Renormalization on the Energy of Optical Transitions in ZnO and Gan”J. Appl. Phys. 88 (2000) 5760.
    [37] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi,” Fermi-level band filling and band-gap renormalization in Ga-doped ZnO” Appl. Phys. Lett. 86 (2005) 192111.
    [38] Er-Jia Guo, Haizhong Guo, Huibin Lu, Kuijuan Jin, Meng He, and Guozhen Yang” Structure and characteristics of ultrathin indium tin oxide films” APPLIED PHYSICS LETTERS 98, 011905 2011

    下載圖示
    QR CODE