簡易檢索 / 詳目顯示

研究生: 謝孟傑
Xie, Meng-Jie
論文名稱: 俱鐵電效應之鉿基氧化物於負電容及記憶體應用
Ferroelectric Hafnium–based Oxides for Negative Capacitance and Memory Applications
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 鉿基氧化物負電容效應記憶體
英文關鍵詞: Hafnium-based oxides, negative capacitance effect, memory
DOI URL: https://doi.org/10.6345/NTNU202204406
論文種類: 學術論文
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 俱鐵電效應之鉿基氧化物(Hafnium-based Oxides)於近幾年吸引相當多探討,因其俱有製程整合之優勢,與目前半導體製程相容。因鉿基氧化物可由原子層沉積 (Atomic Layer Deposition, ALD)技術成長,故俱超薄物理厚度,且在適當掺雜或退火又俱鐵電特性,若發展至負電容(negative capacitance)效應及記憶體(memory)應用將有低耗功及快速操作之發展潛力。本研究的目標就是發展利用鐵電之鉿鋯基氧化物(Hafnium- Zirconium oxide),完成負電容電晶體(NC-FETs)及鐵電記憶體(FeRAM)之研究,並討論其在快速響應下之操作速度。於此論文之研究將瞭解發展鐵電之鉿鋯基氧化物應用於未來世代之邏輯電路或記憶體發展之可行性。

    Ferroelectric Hafnium–based oxides has attracted lots of attention due to the process compatible with currently CMOS process. The physical thickness of the Hafnium–based oxides can be thin down to nanometer scale with the ALD (Atomic Layer Deposition) technology. The ferroelectricity of Hafnium–based oxides is achieved with properly dopants and annealing. The expected advantages, such as low power consumption and high speed operation, may be obtained for the applications of negative capacitance effect and memory. In this study, the Hafnium-Zirconium oxide would be processed and studied. The NC-FETs and FeRAM are fabricated for the response time and operation speed studies. The feasibility of the logic circuit and nonvolatile memory with ferroelectric Hafnium-Zirconium oxide would be discussed in this work.

    Publication…………………………………………………………..…..................…………I 中文摘要……………………………………………………………..……….....................…II Abstract…………………………………………………………………………....................III 致謝…………………………………………………………………….………........................IV 目錄……………………………………………………………………..………........................V 圖目錄……………………………………………………………………….......................VIII 表目錄………………………………………………………………………........................XIV 第一章 簡介……………………………………………….............................1 第二章 文獻探討 2-1鐵電材料於記憶體領域之應用………………………………..………..............17 2-2 俱鐵電特性之鉿基氧化物…………………………………………….................19 2-3 結論……………………………………………………………………….......................32 第三章 鉿基氧化物之基本電性 3-1 Al:HfO2之基本電性.……………………………………….……………...............34 3-2 HfZrOx之基本電性………………………………...…………...……….............36 3-3 結論.……………………………………………………………...………....................41 第四章 鐵電HfZrOx於記憶體上之應用與分析 4-1 研究背景………………………………………………………………….....................43 4-2 不同HZO厚度之電性量測..………………………………………...……............47 4-3 不同Interfacial Layers之Retention time………………..........49 4-4 不同Interfacial Layers之Endurance…………………………………….......51 4-5 結論………………………………………………………………..……….....................54 第五章 鐵電HfZrOx操作速度 5-1 HfZrOx PUND量測技術介紹……………………......…………………..........56 5-2 HfZrOx PUND量測結果與討論………...………………………………............58 5-3 HfZrOx殘餘極化量量測技術介紹……………………………….………............64 5-4 HfZrOx殘餘極化量量測結果與討論…..………………………………...........67 5-5 結論……………………………………………………………………….......................73 第六章 結論與未來工作 6-1 結論…………………………………………………..............……………............74 6-2 未來工作……………………………………………...…………………...................77 參考文獻…………..…………..…….…….……………………..…………..................78

    [1] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [2] A. Chen, “Nanoelectronic Device Research for beyond - CMOS Technologies, ” in “Emerging Technologies for the post 14nm Node Area, ” IEEE IEDM short course, Dec. 8, 2012.
    [3] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. SeIDel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick , “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG,’’ in VLSI Symp. Tech. Dig., 2012, pp. 25-26.
    [4] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [5] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, ’’ Nano Lett.,, Vol. 8, No. 2, pp. 405-410, 2008.
    [6] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.
    [7] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin, and C. Hu, “Low Power Negative Capacitance FETs for Future Quantum-Well Body Technology, ’’ in VLSI-TSA, pp. 179-180, 2013.
    [8] M. H. Lee, Y.-T. Wei, C. Liu, J.-J. Huang, M. Tang, Y.-L. Chueh, K.-Y. Chu, M.-J. Chen, H.-Y. Lee, Y.-S. Chen, L.-H. Lee, and M.-J. Tsai, “Ferroelectricity of HfZrO2 in Energy Landscape with Surface Potential Gain for Low-Power Steep-Slope Transistors, ” IEEE J. of the Electron Device Society, vol. 3, no. 4, pp. 377-381, 2015.
    [9] M. H. Lee, Y.-T. Wei, K.-Y. Chu, J.-J. Huang, C.-W. Chen, C.-C. Cheng, M.-J. Chen, H.-Y. Lee, Y.-S. Chen, L.-H. Lee, and M.-J. Tsai, “Steep Slope and Near Non-Hysteresis of FETs with Antiferroelectric-like HfZrO2 for Low Power Electronics, ” IEEE Electron Device Letter, vol. 36, no. 4, pp. 294-296, 2015.
    [10] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack, ” in IEDM Tech. Dig., pp. 167-170, 2008.
    [11] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, ‘‘Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect Transistor with Sub-60mV/decade Subthreshold Swing and Internal Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
    [12] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. SeIDel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick , “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG,’’ in VLSI Symp. Tech. Dig., 2012, pp. 25-26.
    [13] T. Mikolajick, S. Müller, T. Schenk, E. Yurchuk, S. Slesazeck, U. Schröder, S. Flachowsky, R. v. Bentum, S. Kolodinski, P. Polakowski and J. Müller, “Doped Hafnium Oxide-An Enable for Ferroelectric Field Effect Transistors,’’ AST., vol. 95:136-145, 2014.
    [14] T. S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxide,’’ Appl. Phys. Lett., vol. 99, no. 11, 112904, 2011.
    [15] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,’’ Appl. Phys. Lett., vol. 99, iss. 11, 112901, 2011.
    [16] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectricity in yttrium-doped hafnium oxide,’’ J. Appl. Phys., vol. 110, no. 11, 114113, 2011.
    [17] S. Müller, J. Müller, A. Singh1, S. Riedel, J. Sundqvist, U. Schroeder and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,’’, Adv. Funct. Mater., vol. 22, no. 11, pp. 2412-2417, June 6, 2012.
    [18] T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. V. Elshocht and T. Mikolajick, “Strontium Doped Hafnium Oxide Thin Films: Wide Process Window for Ferroelectric Memories.” ESSDC., 2013. 6818868 .
    [19] A. G. Chernikova, D. S. Kuzmichev, D. V. Negrov, M. G. Kozodaev, S. N. Polyakov, and A. M. Markeev., “Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks,” Appl. Phys. Lett., vol. 108, no. 24, 242905, 2016.
    [20] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in Hafnium OxIDe: CMOS compatible Ferroelectric Field Effect Transistors,’’ in IEDM., 2011, pp. 547-550.
    [21] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., pp. 4318−4323, 2012
    [22] Yu-Chien Chiu, Chun-Hu Cheng, et al, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85 oC -Extrapolated 1016 Endurance” Symp. On VLSI Dig., 2015, p. 14.
    [23] T. P. Ma, and J.-P. Han, ‘‘Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive?,’’ IEEE Electron Device Lett., vol. 23, no. 7, pp. 386-388, July, 2002.
    [24] P. Hulbert, ‘‘Alternative NVM technologies require new test approaches, part 2,’’ Keithley Instruments Inc., November, 2012.
    [25] A. Sheikholeslami, P. Glenn Gulak, “Transient Modeling of Ferroelectric Capacitors for Nonvolatile Memories,’’ IEEE, TUFFC, vol. 43, iss. 03, May, 1996.
    [26] J. Müller, T. S. Böscke, U. Schröder, R. Hoffmann, T. Mikolajick, L. Frey, ‘‘Nanosecond Polarization Switching and Long Retention in a Novel MFIS_FET Based on Ferroelectric HfO2,’’ IEEE Electron Device Lett., vol. 33, no. 2, pp. 185-187, February, 2012.
    [27] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,’’ Appl. Phys. Lett., vol. 99, iss. 11, 112901, 2011.
    [28] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in Hafnium oxide thin films,’’ Appl. Phys. Lett., vol. 99, iss. 10, 102903, 2011.
    [29] U. Schröder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum and T. Mikolajick, “Hafnium Oxide Based CMOS Compatible Ferroelectric Materials,’’ ECS., vol. 02, iss. 04, pp. 69-72, 2013.
    [30] J. Li, B. Nagaraj, H. Liang, W. Cao, Chi. H. Lee and R. Ramesh, “Ultrafast polarization switching in thin-film ferroelectrics,’’ Appl. Phys. Lett., vol. 84, iss. 07, 1174, February 2003.

    無法下載圖示 本全文未授權公開
    QR CODE