簡易檢索 / 詳目顯示

研究生: 丘麗嬌
Chiu, Li-Chiao
論文名稱: 以多樣性與時序性觀點探究使用者在標籤視覺化介面資訊組織歷程之研究
Exploring Diversity and Sequential of Information Organization Process on Tag Visualization Interface
指導教授: 謝吉隆
Hsieh, Ji-Lung
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 128
中文關鍵詞: 資訊組織資訊視覺化網絡分析多樣性時序分析
英文關鍵詞: Information organization, Information visualization, Network analysis, Diversity, Sequential analysis
論文種類: 學術論文
相關次數: 點閱:254下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探究使用者如何利用標籤機制以進行資訊組織,本研究採用標籤視覺化方式觀察使用者資訊組織的歷程變化,將其行為視為使用者組織資訊的策略,以台灣北部高級職業學校二年級非資訊相關科別為研究對象。在分析方法上,本研究採用社會網絡分析來探討使用者標籤網絡的結構性,再引用多樣性的觀點來觀察標籤被重複使用的次數分布,進一步則使用時序性的序列分析指標探討使用者對重複使用標籤或構思新標籤的偏好,最後則根據使用者的標籤網絡探討使用者在不同視覺化介面上組織資訊的策略差異。
    研究結果顯示,透過以網絡方法視覺化標籤實驗的結果,可初步觀察出使用者之間組織資訊的策略存在差異。就介面觀察的結果,本研究發現有部分使用者使用的標籤種類較少,就多樣性分析的結果發現有部分使用者會大量重複出現過的標籤,進一步使用時序性探討使用者使用標籤行為轉換與偏好。使用者在相異介面組織資訊的特色差異如下:(1)標籤網絡介面的使用者會重複使用部分標籤來連接最常出現與最少出現的標籤;在組織過程中則較容易交替反覆、優先使用新的標籤來組織資訊。(2)標籤雲介面的使用者在這30篇網頁組織用到的標籤總個數與標籤種類數相較於其它兩個介面來說數量較少,且會透過少數常被使用的關鍵字,讓標籤之間語意關係愈密切結合;此介面的使用者較容易交替反覆、優先使用已經出現過的標籤來組織資訊。(3)在標籤列表介面上,組織過程中容易讓使用者組織的策略較具有多樣性。(4)三種介面的使用者標籤網絡在度中心勢與舊標籤優先使用權重值上達統計顯著性,代表三種介面的視覺化呈現的差異會讓使用者安排重複出現的標籤上有顯著差異。

    This study is to discuss that tagging on the visualization interface as a personal information organization strategy, and tagging behaviors exists the difference on different visualization interfaces. To understand the difference in how tags are used to organize resources in different tagging visualization interface, we designed an information organization scenario with 2nd grader of non-information science classes in Vocational High School. We used it to compare two concepts: diversity and sequence.
    The study has observed the different organization strategies existed in the different tagging visualization interface, and we found information organization as a dynamic behavior, so we can divided user’s tag network into five categories by diversity and sequence indicators.
    Primary results exhibited difference on the three tagging visualization interface:(1) In the tag network visualization interface, users like to use some tags to interlink the most common tags and the fewest appear tags; in the process of organization, users prefer to use new tags and use these new tags alternately. (2) In the tag cloud visualization interface, users like to use fewer tags to organize the information ; in the process of organization, users prefer to use old tags and use these old tags alternately. (3) In the tag list visualization interface, user’s information organization strategy is more diverse then other visualization interfaces. (4) The degree centralization and old tag preference indicator were significantly in the three visualization interface.

    摘要……………………………………………………………………………i Abstract………………………………………………………………………ii 目次…………………………………………………………………….iii 表次…………………………………………………………………v 圖次……………………………………………………………vii 第一章 緒論……………………………………………………………………… 1 第一節 研究背景與動機…………………………………………………….…….1 第二節 研究目的與問題…………………………………………………….…….4 第二章 文獻探討……………………………………………………………………..6 第一節 資訊組織與標籤相關研究…………………………………….….….…...6 第二節 標籤視覺化介面相關研究……………………………………..………..11 第三節 採用h-index觀點之相關研究………………………………..…………15 第四節 採用社會網絡分析觀點之相關研究………………………………..…..17 第五節 採用生物多樣性觀點之相關研究……………………………………....18 第六節 採用序列分析與優先聯結觀點之相關研究…………………………....20 第三章 研究方法…………………………………………………………………....24 第一節 研究流程…………………………………………..……………………..24 第二節 研究架構…………………………………………………………………25 第三節 研究方法…………………………………………………………………26 第四節 研究對象與研究素材……………………………………………………26 第五節 研究工具…………………………………………………………………28 第六節 研究實施…………………………………………………………………30 第七節 資料前處理……….……………………………………………………...31 第四章 研究結果與分析……………………………………………………………32 第一節 標籤結果使用分析………………………………………………………32 第二節 使用者使用標籤之結構性探討…………………………………………38 第三節 使用者使用標籤之多樣性探討…………………………………………42 第四節 使用者使用標籤之時序性探討…………………………………………45 第五節 使用者背景與三種視覺化介面之關係探討.………………..…….……52 第六節 小結………………………………………………………………………55 第五章 結論…………………………………………………………………………58 第一節 結論………………………………………………………………………58 第二節 研究貢獻…………………………………………………………………63 第三節 未來研究建議……………………………………………………………64 參考文獻 ……………………………………………………………………………65 附錄一 30篇網頁之內容………………………………...…………………………73 附錄二 問卷…………………………………………………………………………88 附錄三 三種視覺化介面之使用者標籤網絡圖……………………………………91 附錄四 標籤網絡介面使用者各指標資料…………………..…...…………...…..123 附錄五 標籤雲介面使用者各指標資料…………………..…...……………...…..125 附錄六 標籤列表介面使用者各指標資料…………………..…...…………...…..127

    王若馨、黃郁青、夏媺婷、李怡芳(譯)(2009)。研究方法的基礎(原作者David, M., & Sutton, C. D.)。台北縣:韋伯文化(原著出版年:2006)。
    吳筱玫(2009)。俗民分類與知識型:Tag的資訊秩序。中華傳播學刊,15,5-24。
    吳筱玫、周芷伊(2009)。Tagging的分類與知識意涵:以 flickr 首頁圖片為例。新聞學研究,99,265-305。
    歐崇明、時文中、陳龍(譯)(2010)。人工智慧:現代方法(第三版)。新北市:全華圖書(原著出版年:2009)。
    鄭惠珍、陳雪華(2004)。知識組織方法探討--從人工智慧、認知心理學、語言
    學與圖書館學角度論之。圖書館學與資訊科學,30(2),69-82。
    林依文(2006)。個人知識重整-以記憶模型與標籤技術為基礎(未出版之碩士論文)。國立交通大學多媒體工程研究所,新竹市。
    陳和琴、張慧銖、江綉瑛、陳昭珍(2009)。資訊組織。新北市:國立空中大學。
    Anderson, C. (2006). The long tail: Why the future of business is selling less of more.
    New York, NY: Hyperion.
    Albert, R., & Baraba´si, A. L.(2002). Statistical mechanics of complex networks.
    MODERN PHYSICS , 74(1), 47-97.
    Arolas, E. E., & Ladrón-de-Guevar, F. G. (2012). Uses of explicit and implicit tags in social bookmarking. Journal of the American Society for Information Science and Technology, 63(2), 313-322.
    Bateman, S., Gutwin, C., & Nacenta, M.(2008). Seeing Things in the Clouds: The Effect of Visual Features on Tag Cloud Selections. Proceedings of the 19th ACM conference on Hypertext and Hypermedia, 193–202.
    Bakeman, R., & Gottman, J. M. (1997) .Observing interaction: An introduction to sequential analysis (2nd.). Cambridge, UK: Cambridge University Press.
    Bearman, D., & Trant, J. (2005). Social Terminology Enhancement through Vernacular Engagement: Exploring Collaborative Annotation to Encourage Interaction with Museum Collections. D-Lib Magazine, 11(9). Retrieved from http://www.dlib.org/dlib/september05/bearman/09bearman.html
    Begelman, G., Keller, P., & Smadja, F. (2006,May). Automated tag clustering: Improving search and exploration in the tag space. Paper presented at the Collaborative Web Tagging Workshop at WWW2006, Edinburgh,Scotland. Retrieved from http://www.ra.ethz.ch/cdstore/www2006/www.rawsugar.com/www2006/20.pdf
    Burgess, C., & Lund, K. (l995a, March). Automatic Extraction of High-Dimensional Semantics from Corpora and Human Syntactic Processing Constraints. Paper presented at the 8th Annual CUNY Sentence Processing Conference, Tucson, AZ. Retrieved from http://locutus.ucr.edu/reprintPDFs/bl95cuny.pdf
    Burgess, C., & Lund, K. (l995b, May). Hyperspace analogue to language (HAL): A general model of semantic representation. In C. Burgess (Chair), Developing Cognitive and Neural Models of High-dimensional Semantic Space. Symposium conducted at the TENNET VI, Sixth Annual Conference on Theoretical and Experimental Neuropsychology, Montreal, Quebec. Retrieved from http://locutus.ucr.edu/reprintPDFs/TEN95syp96bc.pdf
    Cattuto, C., Schmitz, C., Baldassarri, A., Serverdio, V. D., Loreto, V., Hotho, A., Grahl, M., & Stumme, G. (2007). Network properties of folksonomies. AI Communications, 20(1), 245-262.
    Cattuto, C., Barrata, A., Baldassarri, A., Schehr, G., & Loreto, V. (2009). Collective dynamics of social annotation. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10511–10515. doi: 10.1073/pnas.0901136106.
    Chen, S. Y., Tseng, T. T., Ke, H. R., & Sun, C. T. (2011). Social Trend Tracking by Time Series Based Social Tagging Clustering. Expert Systems with Applications, 38(10), 12807-12817.
    Collins, A. M., & Quiilians, M. R. (1969). Retrieval from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240-247.
    Craik, F., & Lockhar, R. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behacior, 11(6), 671-684.
    Cui, W., Wu, Y., Liu, S., Wei, F., & Zhou, M. X. (2010, March). Context Preserving
    Dynamic Word Cloud Visualization. Presented at the IEEE Pacific Visualization Symposium. Taipei, Taiwan. Retrieved from http://research.microsoft.com/en-us/um/people/weiweicu/images/wordpv.pdf
    Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of Networks: From Biological Nets to the Internet and WWW. New York, NY: Oxford University Press.
    Eagele, N., Macy,M., & Claxton, R. (2010). Network Diversity and Economic Development. Science, 328, 1029-1031.
    Edward, F. M. (1964). A Comparison of Some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology, 45, 859-861.
    Farooq,U., Kannampallil, T, G., Yang, S., Ganoe, C, H., Carroll, J, M., & Giles, L,
    C. (2007,November). Evaluating Tagging Behavior in Social Bookmarking Systems: Metrics and design heuristics. Paper presented at the Group 2007 Conference, Sanibel Island, FL.
    Fruchterman, T., & Reingold, E. (1991). Graph drawing by force-directed placement.
    Software-Practice and Experience, 21(11), 1129-1164.
    Fujimura, K., Fujimura, S., Matsubayashi, T., Yamada,T., & Okuda, H. (2008, April).
    Topigraphy: visualization for large scale tag clouds. Poster session presented at the meeting of the WWW 2008, Beijing, China.
    Gao, Q. (2011). An empirical study of tagging for personal information organization: Performance, workload, memory, and consistency. International Journal of Human-Computer Interaction, 27(9), 821-863.
    Golder, S. A., & Huberman, B. A. (2006). Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2), 198-208.
    Guy, M. & Tokin, E. (2006). Tidying up tags. D-Lib Magazine. 12(1). Retrieved
    From http://www.dlib.org/dlib/january06/guy/01guy.html
    Helic, D., Trattner, C., Strohmaier, M., & Andrews, K. ( 2010, August). On the navigability of social tagging systems. Paper presented at the 2010 IEEE Second International Conference on Social Computing, Los Alamitos, CA.
    Heymann, P., & Garcia-Molina, H. (2006). Collaborative creation of communal hierarchical taxonomies in social tagging systems. Stanford InfoLab Technical Report 2006-10. Retrieved from http://ilpubs.stanford.edu:8090/775/1/2006-10.pdf
    Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569-16572. doi:10.1073/pnas.0507655102
    Hsieh, J. L., & Chiu, L. C. (2011, Octorber). Network analysis of tagging structure. Proceedings of the American Society for Information Science and Technology,48(1), 1-4. doi:10.1002/meet.2011.14504801233
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioral patterns of online learning activities. British Journal of Educational Technology, 41(2), 25-27.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2011). A longitudinal analysis of the behavioral patterns in teachers using blogs for knowledge interactions. British Journal of Educational Technology, 42(2), 34-36.
    Kipp, M. E. I., & Campbell, D. G. (2006). Patterns and inconsistencies in collaborative tagging systems: An examination of tagging practices. Proceedings of the American Society for Information Science and Technology. 43(1),1-18. doi:10.1002/meet.14504301178.
    Kipp, M. E. I. (2008, June). @toread and cool: Subjective, affective and associative factors in tagging. Paper presented at the 36th annual conference of the Canadian Association for Information Science. Vancouver, Canada.
    Kipp, M. E. I & Campbell, D. G. (2010). Searching with Tags: Do Tags Help Users Find Things? Knowledge Organization, 37(4), 239-255.
    Kipp, M. E. I. (2011a). Tagging of biomedical articles on CiteULike: A comparison of user, author and professional indexing. Knowledge Organization, 38(3), 245-261.
    Kipp, M. E. I. (2011b). User, author and professional indexing in context: An exploration of tagging practices on CiteULike. The Canadian Journal of Information and Library Science, 35(1), 17-48.
    Marion, S. D., Touchette, P. E., & Sandman, C. A. (2003) Sequential analysis reveals a unique structure for self-injurious behavior. American Journal on Mental Retardation, 108(5), 301-313.
    Marlow, C., Naaman, M., Boymd.,D., Davis, M. (2006, August). HT06, Tagging Paper, Taxonomy, Flickr, Academic Article, to Read. Paper presented at the seventeenth conference on Hypertext and hypermedia, Odense, Denmark.
    Mathes, A. (2004). Folksonomies-Cooperative Classification and Communication through Shared Metadata. Retrieved from http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
    Menhinick, E. F. (1964). A Comparison of Some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology, 45(4), 859-861.
    Merholz, P. (2004). Ethnoclassification and vernacular vocabularies. Retrieved from http://www.peterme.com/archives/000387.html
    Mika, P. (2007). Ontologies are Us: A Unified Model of Social Networks and Semantics. Web Semantics: Science, Service, and Agents on the World Wide Web, 5(1), 5-15.
    Newman, M. E. J. (1939).The structure and function of complex networks. Retreived from http://arxiv.org/pdf/cond-mat/0303516.pdf
    O'Reilly, T. (2005, September). What is Web 2.0. : Design Patterns and Business Models for the Next Generation of Software. Retrieved From http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
    Pollner, P., Palla, G., & Vicsek, T. (2010). Clustering of tag-induced subgraphs in complex networks. Physica A, 389, 5887-5894.
    Reagans, R., & Zuckerman, E. W. (2001). Networks, Diversity, and Productivity: The Social Capital of Corporate R&D Teams. Organization Science, 12(4), 502-517.
    Rivadeneira, A. W., Gruen, D. M., Muller, M. J., & Millen, D. R.(2007, May). Getting our head in the clouds: toward evaluation studies of tagclouds. Paper presented at the Computer/Human Interaction 2007 Conference, San Jose, CA.
    Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.
    Schmitz, C., Grahl, M., Hotho, A., Stumme, G., Cattuto, C., Baldassarri, A., Loreto, V., & Servedio, V. D. P. (2007, May). Network properties of folksonomies. Paper presented at the (WWW2007 conference): Workshop on Tagging and Metadata for Social Information Organization, Alberta, Canada.
    Schrammel, J., Leitner,M., & Tscheligi,M. (2009, April). Semantically Structured Tag Clouds: An Empirical Evaluation of Clustered Presentation Approaches. Paper presented at the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA.
    Sen, S., Lam S. K., Rashid, A. M., Cosley, D., Frankowski, D., Osterhouse,J., Harper, F.M. & Riedl, J. (2006, November). Tagging, communities, vocabulary, evolution. Paper presented at the 2006 20th anniversary conference on Computer supported cooperative work, Alberta, Canada.
    Shannon, C, E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
    Shen, K., & Wu, L.(2005, September 23).Folksonomy as a complex network. [online repository].Retrieved from http://arXiv:cs/0509072
    Shirky, C. (2005a). Folksonomies are a forced move: A response to Liz.
    Retrieved from http://many.corante.com/archives/2005/01/22/folksonomies_are_a_forced_move_a_response_to_liz.php
    Shirky, C. (2005b). Ontology is Overrated: Categories, Links, and Tags. Retrieved from http://www.shirky.com/writings/ontology_overrated.html
    Simpson, E. H. (1949). Measurement of Diversity. Nature, 163,688-688.
    Sinclair, J., & Cardew-Hall, M. (2008). The folksonomy tag cloud: When is it useful? Journal of Information Science, 34(1), 15-29.
    Smith, G. (2008). Tagging: People-powered metadata for the social web. New York, NY: New Rider.
    Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. The origins of order: self organization and selection in evolution. New York, NY: Oxford University Press.
    Stirling, A. (2006). On the economics and analysis of diversity. (Electronic Working Papers Series Paper No. 28). Retrieved from http://www.sussex.ac.uk/Units/spru/publications/imprint/sewps/sewp28/sewp28.pdf
    Sung, Y. T., Hou, H. T., & Liu, C. K., Chang K. E.*. (2010). Mobile Guide System using Problem-solving Strategy for Museum Learning: A Sequential Learning Behavioral Pattern Analysis. Journal of Computer Assisted Learning, 26(2), 106-115.
    Tapscott, D., & Williams, A. D. (2006). Wikinomics: How mass collaboration changes everything. New York,NY: Portfolio.
    Taylor, A. G.(1999).The Organization of information. Englewood, CO : Libraries Unlimited.
    Trant, J.(2009). Studying Social Tagging and Folksonomy: A Review and Framework. Journal of Digital Information, 10(1). Retrieved from http://journals.tdl.org/jodi/index.php/jodi/article/viewArticle/269
    Trattner, C., Denis, H., & Strohmaier, M. (2011). On the construction of efficiently navigable tag clouds using knowledge from structured web content. Journal of Universal Computer science, 17(4), 565-582.
    Wal, T. V. (2005). Folksonomy. Retrieved from http://vanderwal.net/essays/051130/folksonomy.pdf
    Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.

    下載圖示
    QR CODE