簡易檢索 / 詳目顯示

研究生: 何婉鈺
論文名稱: 雙金屬FePt奈米粒子以化學法去合金機制並探討其觸媒結構變化過程中的氧氣還原反應
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧氣還原反應
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇旨在研究觸媒結構與電催化活性的關係,作為陰極觸媒之FePt已經被廣泛運用於燃料電池的陰極觸媒,吾人欲模擬實際電池工作下電解液是否會對觸媒表面結構造成影響,於是以酸洗去合金化的實驗來觀察FePt觸媒結構變化。進而利用XAS中的EXAFS數據分析FePt去合金化奈米粒子的結構及表面組成,並且利用XRD、TEM等儀器分析 ,發現FePt奈米粒子不會因為酸洗而破壞觸媒的結構。此外,並將FePt去合金化系列樣品做氧氣還原反應(ORR)的電化學活性測試。

    於陰極催化方面,在高電位(1.0V)下,FePt去合金化系列觸媒中以FePt去合金化30min具有最好的氧氣還原反應的活性,根據文獻與表面組成,發現加入活性高的金屬有助於觸媒對於氧氣的分解吸附,FePt去合金化30min表面Fe的合金程度最高,氧氣還原活性也最好。而在低電位(0.75V)下,以FePt去合金化8hr具有最好的氧氣還原活性,根據表面組成分析發現FePt去合金化8hr表面Pt的合金程度最高,有助於將所吸附氧原子進行電子轉移還原成水。因此,我們了解雙金屬FePt奈米粒子以化學法去合金機制的觸媒結構變化以及對氧氣還原反應活性所造成的影響。

    總目錄......................................................................................................Ⅰ 圖目錄......................................................................................................V 中文摘要..................................................................................................IX 英文摘要..................................................................................................X 第一章 緒論..............................................................................................1 1.1 前言.....................................................................................................1 1.2 燃料電池的發展及原理.....................................................................2 1.2.1 燃料電池的種類......................................................................4 1.3 直接甲醇燃料電池( Direct methanol fuel cell ).................................6 1.3.1 DMFC陽極觸媒.......................................................................8 1.3.2質子交換膜(PEM) ..................................................................10 1.3.3 DMFC陰極觸媒.....................................................................10 1.4 研究動機與方法...............................................................................19 第二章 原理............................................................................................20 2.1何謂同步輻射光.........................................................................20 2.2 X光吸收光譜原理.....................................................................20 2.2.1 X光吸收近邊緣結構 (XANES)............................................25 2.2.2延伸X光吸收微細結構 (EXAFS)........................................27 2.2.3 EXAFS數據分析....................................................................31 2.3 粉末X光繞射光譜(Powder X-ray Diffration)..................................35 2.4 穿透式電子顯微鏡(Transmission electron Microscopy).................35 2.5 電化學原理.......................................................................................37 2.5.1 循環伏安法............................................................................37 2.5.2電池的極化現象......................................................................41 2.5.2.1 活性過電位...............................................................41 2.5.2.2 濃度過電位...............................................................43 2.5.2.3 歐姆過電位...............................................................44 2.5.3 極化曲線................................................................................45 2.5.4 旋轉盤電極(Rotating Disc Electrode, RDE).........................47 第三章 實驗部份....................................................................................50 3.1 實驗藥品及設備...............................................................................50 3.1.1 實驗藥品................................................................................50 3.1.2 實驗設備................................................................................52 3.2 實驗方法.........................................................................................53 3.2.1 碳黑之前處理........................................................................53 3.2.2 合成FePt奈米粒子................................................................54 3.2.3 觸媒製備................................................................................54 3.2.4 製備去合金化的觸媒............................................................55 3.2.5觸媒漿液配製..........................................................................55 3.3 材料鑑定與分析...............................................................................56 3.3.1 XRD分析.............................................................................56 3.3.2 TEM分析.............................................................................56 3.4 電化學特性測試...............................................................................57 3.4.1 電極之清洗..........................................................................57 3.4.2觸媒漿液塗佈方式................................................................58 3.4.3 電化學特性量測..................................................................58 3.4.3.1 循環伏安法.............................................................59 3.4.3.2 氧氣還原測試.........................................................59 3.5 X光吸收光譜(XAS).......................................................................59 3.5.1 EXAFS之曲線適配.............................................................60 3.5.2 以X光吸收光譜分析觸媒結構............................................60 第四章 結果與討論................................................................................64 4.1 陰極觸媒材料...................................................................................64 4.1.1 合成FePt奈米粒子................................................................64 4.1.2 材料之晶相與形態分析........................................................65 4.1.3 XANES之吸收係數............................................................70 4.1.4 X光吸收光譜.......................................................................70 4.1.4.1 X光吸收近邊緣結構(XANES)..............................70 4.1.4.2 延伸X光吸收微細結構(EXAFS)............................72 4.1.5 觸媒材料之結構比較............................................................76 4.1.6 電化學特性量測結果............................................................81 4.1.6.1 循環伏安法...............................................................81 4.1.6.2 線性掃描伏安法.......................................................83 4.1.7 陰極觸媒電化學活性之比較................................................85 第五章 結論............................................................................................89 5.1 結論...................................................................................................89 5.2 未來展望...........................................................................................90 第六章 參考資料....................................................................................91 圖目錄 圖1-1 甲醇燃料電池的工作原理............................................................7 圖1-2 燃料電池可用電位及陰陽兩極損失電位示意圖........................8 圖1-3 杜邦公司所研發的Nafion®化學結構式.....................................10 圖1-4 Pt3Co、Pt3Ni、Pt-poly等觸媒ORR活性之比較............................12 圖1-5(a)Pt和Pt合金之循環伏安圖....................................................12 (b)Pt61N39,Pt71Co29,Pt51Fe49 和Pt , Ni, Co, Fe等金屬比較之氧氣還原反應圖..........................................................................12 圖1-6 (a)Pt,Pt3M觸媒0.9V時的specific activity 示意圖..................15 (b)Pt,Pt3M觸媒氧氣的吸附能對氧氣還原反應活性關係圖..15 圖1-7(a)不同金屬對氧原子束縛能和氧氣還原活性的趨勢關係圖..16 (b)不同金屬O及OH束縛能和氧氣還原活性的關係圖..........16 圖1-8 Pt的5d空軌域增減程度對氧氣的影響.....................................18 圖1-9 藉由循環伏安法選擇性的溶解表面的Cu原子之示意圖.........18 圖2-1 電子由基態到激發態的能階圖..................................................22 圖2-2 LiNi0.65Co0.25Mn0.1O2 粉末的吸收光譜.......................................25 圖2-3中心吸收原子與相鄰原子之距離 d 之位能圖.........................28 圖2-4 EXAFS數據流程分析圖.............................................................32 圖2-5圖示說明XRD基本原理.............................................................34 圖2-6穿透式電子顯微鏡原理示意圖....................................................37 圖2-7 穿透式電子顯微鏡JEOL-JEM-2000FX.....................................37 圖2-8 連續循環電位變化......................................................................38 圖2-9 Pt之循環伏安在0.5 M硫酸水溶液............................................39 圖2-10 典型的燃料電池極化曲線.........................................................46 圖2-11旋轉盤電極示意圖與流體流動的情形......................................47 圖3-1 合成奈米觸媒裝置圖..................................................................53 圖3-2 電極性能測試裝置簡圖..............................................................57 圖3-3 電化學測量裝置..........................................................................58 圖3-4 不同合金程度之雙金屬分佈示意圖..........................................63 圖4-1 FePt之合成之流程圖...................................................................65 圖4-2 FexPt1-x系列觸媒20 wt%在0.5M硫酸進行去合金化後,在H2 下經300oC鍛燒之XRD................................................................66 圖4-3以碳黑為擔體之FexPt1-x樣品TEM成像.....................................67 圖4-4 FexPt1-x去合金化系列樣品TEM成像.........................................68 圖4-5 以碳黑為擔體之FexPt1-x 去合金化系列樣品HRTEM成像....69 圖4-6 FexPt1-x去合金化系列觸媒Pt LIII edge之XANES......................71 圖4-7 FexPt1-x去合金化系列觸媒Fe K edge之XANES........................72 圖4-8 FexPt1-x去合金化系列觸媒之Pt LIII edge之k2-weighted EXAFS圖譜.........................................................................................73 圖4-9 FexPt1-x去合金化系列觸媒經300oC氫氣還原之Pt LIII edge之k2-weighted EXAFS經傅立葉轉換後圖.................................74 圖4-10 FexPt1-x去合金化系列觸媒之Fe K edge之k2-weighted EXAFS圖譜..............................................................................................74 圖4-11 FexPt1-x去合金化系列觸媒經300oC氫氣還原之Fe K edge之k2-weighted EXAFS經傅立葉轉換後圖...................................75 圖4-12 (a) FexPt1-x去合金化系列觸媒配位數NPt-Pt、NPt-Fe對酸洗 時間之比較....................................................................79 (b) FexPt1-x去合金化系列觸媒配位數NFe-Pt、NFe-Fe對酸洗 時間之比較..................................................................79 圖4-13 FexPt1-x去合金化系列觸媒合金程度JPt、JFe對酸洗時間之比 較................................................................................................80 圖4-14 FexPt1-x去合金化系列觸媒酸洗時間對未填滿d電子態之比 較............................................................................................... 81 圖4-15 FexPt1-x 去合金化系列觸媒第10圈的循環伏安圖,在室溫 下0.5M硫酸溶液中以掃描速率50 mV/s的結果........................82 圖4-16 FexPt1-x 去合金化系列觸媒與之氧氣還原反應圖....................84 圖4-17 FexPt1-x去合金化系列觸媒氧氣還原反應之單位重量活性及 Pt合金程度之比較....................................................................86 圖4-18 FexPt1-x去合金化系列觸媒氧氣還原反應之單位重量活性及 Fe合金程度之比較....................................................................87 圖4-19 FexPt1-x觸媒經過去合金化時奈米粒子組成與時間變化之示意圖................................................................................................88

    [1]. 楊志忠、林訟恩、韋文誠,燃料電池的發展現況,科學發展, 367期,2003年.
    [2]. 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 節約能源論文發表會論文專輯, 1999年,409-422.
    [3]. Jalan and V.M., U. S. Patent, 1980, 202,934.
    [4]. Jerry C. Huang , Micro-Fuel Cell Workshop , 2001.
    [5]. A. Hamnett, Catal. Today, 1997,38, 445.
    [6]. N.M. Markovic, P. N. Ross Jr., Surface Science Reports,2002,45, 117.
    [7]. C. S. Tsao, H. L. Chang, U. S. Jeng, J. M. Lin, and T. L. Liu, Polymer, 2005, 46,8430.
    [8]. Jalan and V.M., U. S. Patent, 1980, 202,934.
    [9]. Jalan, V.M. and D.A.Landsman, U.S. Patent, 1980,186,110.
    [10]. Luczak, F.J. and D.A.Landsman, U.S.Patent, 1987,677,092.
    [11]. Beard. B. C. and P.N. Ross, Jr. , J. Electrochem. Soc., 1990,137, 3368-3374 .
    [12]. Paffett, M. T., J. G.beery and S. Gottesfeld, J.Electrochem. Soc. , 1988,135, 1431-1436.
    [13]. N.M.Markovic,T.J.Schmidt,V.Stamenkovi and P.N.Ross , Fuel Cell , 2001, 2,1
    [14]. Takako Tpda, Hiroshi Igarashi, Hiroyuki Uchida, and Masahiro Watanabe, J. Electrochem. Soc. , 1998,145,4185-4189.
    [15]. Batista, E.A.; Malpass, G.R.P.; Motheo, A.J.; Iwasita, T., Journal ofElectroanalytical Chemistry , 2004, 571, 273
    [16]. Santos, L.G.R.A.; Oliveira, C.H.F.; Moraes, I.R.; Ticianelli, E.A.,Journal of Electroanalytical Chemistry 2006, 596,141.
    [17]. Antolini, E.; Salgado, J.R.C.; Gonzalez, E.R., Journal of ElectroanalyticalChemistry ,2005, 580, 145.
    [18]. Namsin P.,Shiraishi, T. Kamisugi, K. Hara, Y. Iizuka, K. Kado, T. Hayase,S., Journal of the Applied Electrochemistry, 2008, 38, 371.
    [19]. GongY.,Yeboah, Y. D. Lvov, S. N.,Balashov, v. Wang, Z., Journal of the Electrochemical Society , 2007, 154, B560.
    [20]. Xiong L., Manthiram, A., Electrochimica Acta , 2005, 50, 2323.
    [21]. Santos, L.G.R.A.; Oliveira, C.H.F.; Moraes, I.R.; Ticianelli, E.A., Journal of Electroanalytical Chemistry ,2006, 596,141.
    [22]. Zhongwei Chen, Mahesh Waje, Wenzhen Li, and Yushan Yan,Angew. Chem. Int. Ed. ,2007, 46, 4060 –4063.
    [23]. Min-Hua Shao, Kotaro Sasaki, and Radoslav R. Adzic, J. AM. CHEM. SOC., 2006, 128, 3526-3527.
    [24]. Pharkya, P.; Alfantazi, A.; Farhat, Z., Journal of Fuel Cell Science and Technology ,2005, 2, 171.
    [25]. Markovic, N.M.; Lucas, C.A.; Climent, V. Stamenkovic, V. Ross, P.N.,Surface Science , 2000, 465,103.
    [26]. Vojislav Stamenkovic, Bongjin Simon Mun,Karl J. J. Mayrhofer, Philip N. Ross,NenadM. Markovic, Jan Rossmeisl, Jeff Greeley, and Jens K. Norskov, Angew. Chem. Int. Ed. , 2006, 45, 2897 -2901

    [27]. J. K. Nørskov, J. Rossmeisl, A. Logadottir, and L. Lindqvist , J. Phys. Chem. B, 2004, 108, 17886-17892
    [28]. Takako T., Hiroshi I., Hiroyuki U., Masahiro W., J. Electrochem. Soc., 1999, 146, 3750-3756
    [29]. Prasanna Mani, Ratndeep Srivastava, and Peter Strasser , J. Phys. Chem. C , 2008, 112, 2770-2778
    [30]. Ratndeep Srivastava, Prasanna Mani, Nathan Hahn, and Peter Strasser , Angew. Chem. Int. Ed. , 2007, 46, 1–5
    [31]. 陳錦明,科儀新知, 1994 ,82, 50
    [32]. 許益瑞、劉如熹、陳錦明,科儀新知, 2001 , 120, 12
    [33]. 李志甫,化學,1995 , 53, 280
    [34]. D. C.Koningsberger and R. Prins, New York: John Wiley & Sons, X-ray Absorption: Principles, Applications,Techniques of EXAFS, SEXAFS and XANES, 1988,573
    [35]. Newville, M. AUTOBK document, 1995
    [36]. D. C. Koningsberger and R.Prins, New York: John Wiley & Sons, X-ray Absorption: Principle, Applications, Techniques of EXAFS, SEXAFS and XANES, 1988 ,3
    [37]. Fujikawa, T, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces, 1996 , 60
    [38]. Mansour, A. N.; Cook, J. W.; Sayers, D. E. J. Phys. Chem. 1984,88, 2330.
    [39]. Newville, M. AUTOBK document ,1995
    [40]. Newville, M. FEFFIT document ,1996
    [41]. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”, 1997.
    [42]. Tran, T. D.; Langer, S. H., Anal. Chem., 1993, 65, 1805.
    [43]. T. E. Springer, D. Raistrick, J. Electrohem. Soc. , 1989, 136,1594.
    [44]. K. W. Park, B. K. Kwon, J. H. Choi, Y. M. Kim, Y. E. Sung, J.Power Sources, 2002,109,439.
    [45]. T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, J. Power Sources, 2004, 125, 1.
    [46]. J. Kim, S. M. Lee, S. Srinivasan, J. Electrochem. Soc., 1995,142, 2670.
    [47]. M. D. Bernardi, M. W. Verbrugge, J. Electrochem. Soc., 1992,139 2477.
    [48]. 胡啟章, “電化學原理與方法” , 五南圖書出版公司, 2002.
    [49]. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., J. Am. Chem. Soc., 2005, 127, 11140.
    [50]. Yange Suo, Lin Zhuang, and Juntao Lu Angew. Chem. Int. Ed. , 2007, 46, 2862 –2864

    無法下載圖示 本全文未授權公開
    QR CODE