簡易檢索 / 詳目顯示

研究生: 賴瑞澤
Lai,Jui-Tse
論文名稱: 磁性奈米粒子顯影劑在低場核磁共振中增強T1權重造影特性研究
The study on T1 contrast enhancement of magnetic nanoparticle agent in Ultra low –field MRI
指導教授: 廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 46
中文關鍵詞: 低場磁振造影預先極化技術磁流體弛緩率
論文種類: 學術論文
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性奈米粒子溶液又稱為磁流體,在高場核磁共振系統常被當作T2顯影劑。磁流體為超順磁顯影劑,相較於其他顯影劑,具有較好的生物相容性。而在過去的研究指出低磁場磁振造影下T1對比效果可被增強,因此期望應用低場磁振造影系統並與傳統高場磁振造影系統,探討磁性奈米粒子顯影劑在高場與低場下的對比效應。為此本研究使用並改進自製的低場核磁共振系統以及7T核磁共振系統,量測不同濃度磁流體的T1及T2弛緩時間,以得到高場以及低場的弛緩率R1及R2。驗證磁流體在高、低場下的T1與T2對比效果。並透過磁振造影影像強度,驗證了磁流體在低場的T1權重造影對比度比高場佳;而含鐵量高的磁流體T2權重造影在高場對比度比低場佳;含鐵量低的磁流體T2權重造影在低場對比度比高場佳。確立磁流體在低場磁振造影下,僅需較低劑量即能有良好的對比效益。故能降低劑量以及成本,且能減少因劑量而產生的副作用風險,具有臨床應用的潛力。

    目錄 第一章 緒論 1 1-1 磁振造影顯影劑 1 1-2權重造影 2 1-3研究磁流體高低場表現的目的 3 第二章 實驗原理 5 2-1 原子核的特性 5 2-2 核磁共振原理 5 2-3弛緩(Relaxation) 11 2-4自由感應衰減(Free Induction Decay) 13 2-5 磁振造影原理 14 第三章 實驗架構及方法 18 3-1 低場核磁共振系統架構介紹 18 3-2 T1弛緩時間量測方法與波序 19 3-3 T2弛緩時間量測方法與波序 20 第四章 實驗結果與討論 23 4-1大面積接收線圈最佳化與造影 23 4-2高場磁流體量測結果 28 4-3低場磁流體量測結果 34 第五章 結論 41 參考文獻 42

    [1] 游宗儒,張雅惠,王雲銘,2009,〈磁振造影對比劑之發展簡介與研究趨勢〉,《化學》,67(2):165-177
    [2] 中國醫藥大學醫學系,醫學影像學習園地,2015年6月30取自
    http://www2.cmu.edu.tw/~cmcmd/ctanatomy/FAQ/index.html
    [3] Lee SK, Mössle M, Myers W, Kelso N, Trabesinger AH, Pines A, Clarke J. “SQUID-detected MRI at 132 microT with T1-weighted contrast established at 10 microT--300 mT.”, Magn Reson Med. Jan;53(1):9-14(2005)
    [4] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer “Theory of spin-exchange optical pumping of 3He and 129Xe”, Phys. Rev. A 58, 1412 (1998).
    [5] Shu-Hsien Liao, Kai-Wen Huang, Hong-Chang Yang*, Chang-Te Yen, M. J. Chen, Hsin-Hsien Chen, Herng-Er Horng*, and Shieh Yueh Yang, “Characterization of tumors using SQUID-detected nuclear magnetic resonance and imaging”,Appl. Phys. Lett. 97, 263701 (2010)
    [6] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI ”,Magn.Reson. Imaging 23, 153 (2005)
    [7] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [8] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
    [9] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [10] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [11] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [12] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [13] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
    [14] Y. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys., vol. 70, 175(2002.)
    [15] R. McDermott, A. H. Trabesinger, M. Mück, E. L. Haln, A. Pines, and J. Clarke, “Liquid-state NMR and scalar couplings in microtesla magnetic fields,” Science, vol. 295, 2247( 2002.)
    [16] Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms,“Liquid state nuclear magnetic resonance at low fields using a nitrogencooled superconducting quantum interference device,” Appl. Phys. Lett.,vol. 90,182503(2007)
    [17] K. Schlenga, R. McDermott, J. Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high- Tc dc superconducting quantum interference device,” Appl. Phys. Lett., vol. 75,3695(1999)
    [18] H. C. Yang, S. H. Liao, H. E. Horng, S. L. Kuo, H. H. Chen, and S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device,” Appl. Phys. Lett., vol. 88,252505( 2006.)
    [19] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range,” App. Phys. Lett., vol. 87, 054103(2005.)
    [20] L. Qiu, Y. Zhang, H. J. Krause, A. H. Braginski, M. Burghoff, and L. Trahms, “Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device,”Appl. Phys. Lett., vol. 91, 072505(2007.)
    [21] S. H. Liao, H. E. Horng, H. C. Yang, and S. Y. Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetometer,” J. Appl. Phys., vol. 102, 033914(2007.)
    [22] J. Clarke, M. Hatridge, and M. Mößle, “Resonance imaging in Microtesla,” Annu. Biomed. Eng., vol. 9,389( 2007.)
    [23] S. H. Liao, H. C. Yang, H. E. Horng, S. Y. Yang, H. H. Chen,D. W. Hwang, and L. P. Hwang, “Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas,” Supercond. Sci. Technol., vol. 22,045008(2009)
    [24] S. H. Liao, H. C. Yang, H. E. Horng, and S. Y. Yang, “Characterization of magnetic nanoparticles as contrast agents in magnetic resonance imaging using high-Tc superconducting quantum interference devices in microtesla magnetic fields,” Supercond. Sci. Technol., vol. 22, 025003(2009).
    [25] H. C. Seton, J.S.M. Hutchison, D. M. Busell, “A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm”,Meas. Sci. Technol. 8, 198 (1997).
    [26] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, “Nuclear magnetic resonance using a high temperature superconducting quantum interference device”Appl. Phys. Lett. 70, 1037 (1997).
    [27] S. Kumar, W. F. Avrin, B. R. Whitecotton, “NMR of room temperature samples with a flux-locked dc SQUID" IEEE Trans. Magn. 32, 5261 (1996).
    [28] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, “Low-Field Magnetic Resonance Imaging with a High-Tc dc Superconducting Quantum Interference Device," Appl. Phys. Lett. 75, 3695 (1999).
    [29] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, “Nuclear magnetic resonance with DC SQUID preamplifiers”IEEE Trans. Magn, vol. 25,1193(1989)
    [30] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. “SQUID-based simultaneous detection of NMR and biomagnetic signals at ultra-low magnetic fields" IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [31] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range",Appl. Phys. Lett. 87, 054103 (2005)
    [32] W. Myers, D. Slichter, M. Hatridge, S. Busch, M. Mößle, R. McDermott,A. Trabesinger, and J. Clarke, “Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T,” J. Magn. Reson., vol. 186, 182, 2007.
    [33] Joseph P. Hornak, Ph.D. (1996-2011),The Basics of MRI, in http://www.cis.rit.edu/htbooks/mri/inside.htm

    無法下載圖示 本全文未授權公開
    QR CODE