簡易檢索 / 詳目顯示

研究生: 李麗偵
論文名稱: 化學摻料分子在水泥表面吸附之行為
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
畢業學年度: 87
語文別: 中文
論文頁數: 113
中文關鍵詞: 吸附強塑劑水泥分子模擬
英文關鍵詞: adsorption, superplasticizer, cement, molecular simulation
論文種類: 學術論文
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子動力學在近幾年來常應用於分子結構的研究,以電腦分子動力模擬的方式進行分子動力學性質的計算。本研究利用分子動力模擬軟體Cerius2 3.5,模擬強塑劑分子的性質對於水泥顆粒表面吸附的影響。吸附現象有物理吸附及化學吸附兩種,物理吸附的強弱主要決定於分子與表面間的凡得瓦耳力及靜電力。在水泥水化過程中,水泥顆粒表面帶有正電荷,使得帶陰離子官能基的化學摻料吸附於其上。而化學摻料分子也會尋找較有利的吸附位向,達到較低能量的穩定狀態。不同的分子所得的結果也不盡相同。本研究分別探討了不同官能基的分子對不同的水泥成分表面(C3A(Al)﹑C3A (Ca)﹑C3S)的吸附作用﹑摻料分子聚合度﹑側鏈大小與分子主鏈上所含有的碳鏈長短對吸附結果的影響,以及幾種常見的商用強塑劑在水泥顆粒表面上的吸附情形。
    模擬結果指出,強塑劑分子所含的官能基種類對吸附的強弱次序分別為離子性官能基大於極性基,非極性基的吸附力則最差。C3A由於組成中含有正電性較大的鋁原子,對強塑劑的吸附力勝於C3S;水泥顆粒對強塑劑的吸附力隨著其分子量的增加而變大,但存在一摻料分子的最大聚合度,超過此分子量極限值,水泥顆粒表面對化學摻料的吸附力便不再增加;強塑劑分子的側鏈增加吸附層的厚度,這是造成水泥顆粒間立體障礙,分散性提高的主因;強塑劑分子的主鏈中所含的碳鏈愈長,分子結構的柔曲性愈高,因而利於分子尋找較佳的吸附位向,使得強塑劑吸附後的位能降得較低;在相同聚合度之下,水泥對SMF有較強的吸附力,其次為PNC、PNS,LS則為最差。

    The effects of superplasticizers (SP) on the early age of cement hydration and dispersion are mainly influenced by the adsorption of SP to the surface of cement particles. We used Cerius2 software to compute the molecular energy changes, such as van der Waal, electrostatic, potential energy, etc, and the changes of polymeric conformations before and after adsorption. Different components of cement (C3A, C3S), functional groups, degree of polymerization and structures of poly-naphthalene based chemical admixtures cause big influence on the adsorption. The simulation results indicate that C3A shows higher electrostatic force and stronger adsorptive capability than C3S. The ionic functional groups of poly-naphthalene based chemical admixtures exhibit larger electrostatic and potential energy depression than polar and nonpolar groups. As the main chain in SP structure unit becomes larger, the polymer becomes more flexible and would reach a lower energy level after adsorption. The side chain in SP structure unit causes less effect, but it will enlarge the depth of adsorption layer and cause some steric effects.

    摘要 1 ABSTRACT 2 表目錄 5 圖目錄 6 第一章 前言 11 第二章 文獻回顧 13 2.1波特蘭水泥 13 2.2 水泥的水化反應 14 2.2.1 水泥水化反應的熱力學 15 2.2.2 水泥水化反應的動力學 18 2.2.3 影響水化的因素 23 2.3 化學摻料簡介 24 2.3.1化學摻料的分類 24 2.3.2強塑劑的作用機理 27 2.3.3影響水泥水化作用的變因 32 2.4 分子動力模擬簡介 37 2.4.1力場( Force field )簡介 37 .4.2.2分子動力模擬中的電荷平衡 46 第三章實驗方法 50 3.1分子動力模擬基本條件設定[41] 50 3.1.1.電荷平衡: 50 3.1.2.選取表面: 50 3.1.3.決定表面厚度: 50 3.1.4.決定開始吸附的距離: 51 3.2建構分子 60 3.3分子吸附動力模擬計算 60 第四章結果與討論 61 4.1不同官能基在不同水泥顆粒表面上的吸附 61 4.2聚合度對吸附的探討 78 4.3側鏈對吸附的影響 85 4.3.1不同長度的側鏈的影響 85 4.3.2.側鏈形狀對吸附的影響 87 4.4聚合物主鏈中碳鏈長度對於吸附的影響 96 4.5不同分子之吸附情形 100 第五章結論 108 第六章參考資料 109

    1. 許貫中,化學摻料在混凝土中的角色,高性能研發及推廣研討會論文集,pp. 73-81, 1997
    2. M. Moukwa, D. Youn, and M. Hassanali, Effects of degree of polymerization of water soluble polymers in concrete properties, Cement and Concrete Research, Vol. 13, pp. 122-130, 1993.
    3. E. Sakai, K. Rania, et al., Influence of Sodium Aromatic Sulfonates on the hydration of tricalaium aluminate with or without gypsym, Cement and Concrete Research, Vol. 10, pp. 311-319, 1980.
    4. H. Uchikawa and S. Hanehara, Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity an setting of fresh cement paste, Cement and Concrete Research, Vol. 22, pp. 1115-1129, 1992.
    5. 黃兆龍, 混凝土性質與行為, 詹氏書局, pp. 21-35,1997
    6. C. Jolicoeur, M. Simard, Chemical admixture-cement interactions: phenomenology and physico-chemical concepts, Cement and Concrete Composites, Vol. 20, pp. 87-101.
    7. S. Mindess and J. F. Young , Concrete, Prentice Hall, Englewood Cliffs, NJ, pp.76-83, 1981.
    8. V. T. Yilmaz and F. P. Glasser, Early hydration of tricalcium aluminate-gypsum mixtures in the presence of sulphonated melamine formaldehyde superplasticizer, Cement and Concrete Research, Vol. 21, No. 5,pp. 765-776, 1991.
    9. H. N. Stein, Thermodynamic considerations on the hydration mechanism of Ca3SiO5 and Ca3Al2O6, Cement and Concrete Research, vol. 2, pp. 167-177, 1972.
    10. M. R. Rixom and N. P. Mailvaganam, Chemical Admixture for Concrete, E. and F. N. Spon Ltd.,NY, 2nd ed., pp. 27-31, 1986.
    11. W. Rechenberg and S. Sprung, Composition of the solution in the hydration of cement, Cement and Concrete Research, Vol. 13, pp. 119-126, 1983.
    12. A. Moragues, A. Macias and C. Andrade, Equilibria of the chemical composition of the concrete pore solution. part Ⅰ: comparative study of synthetic and extrated solutions, Cement and Concrete Research, Vol. 17, pp. 173-182, 1987.
    13. A. Moragues, A. Macias, C. Andrade and J. Losada, Equilibria of the chemical composition of the concrete pore solution. part Ⅱ: calculation of the equilibria constants of the synthetic solutions, Cement and Concrete Research, Vol. 18, pp. 342-350, 1988.
    14. R. Trettin, V. Satava and W. Wieker, Studies on physico-chemical changes in time of initial setting of C3S, Hydration and Setting of Cements, E and FN Spon, London, 1992.
    15. A. Wang, C. Zhang and N. Zhang, Study of the influence of the particles size distribution on the properties of cement, Cement and Concrete Research, Vol. 27, No. 5, pp. 685-695, 1997.
    16. I. Tanaka, N. Suzuki, Y. Ono and M. Koishi, Fluidity of spherical cement and mechanism for creating high fluidity, Cement and Concrete Research, Vol. 28, No. 1, pp. 63-74, 1998.
    17. I. Odler and R. Wonnemann, Effect of alkalies on portland cement hydration Ⅱ. alkalies present in form of sulfates, Cement and Concrete Research, Vol. 13, pp. 771-777, 1983.
    18. M. R. Rixom and N. P. Mailvaganam, Chemical Admixture for Concrete 2nd ed., E. and F. N. Spon Ltd.,NY, pp. 5-9, 1986.
    19. M. Absi-Halabi, S. M. Lahalihand I. Al-Khaled, Water soluble sulfinated amino formaldehyde resins. Ⅰ. melamine resins, synthesis, J. of Applied Polymer Science, Vol. 33, pp. 2795-2984,1987.
    20. M. Collepardi and M. Corradi, Influence of polymerization of sulfonated naphthalene condensate and its interaction with cement, Developments in the use of superplasticizers, ACI Publication, SP 68-27, pp. 485-514, 1981.
    21. P. Aitcin, C. Jolicqeur and J. G. MacGregar, Superplasticizers: How they work and why they occasionally don't, Concrete interational, pp. 45-52, 1994.
    22. E. Nagele and U. Schneider, From cement to hardened paste- an electrokinetic study, Cement and Concrete Research, Vol. 19, pp. 978-986, 1989.
    23. H. Uchikawa, S. Hanehara and D. Sawaki, The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture, Cement and Concrete Research, Vol. 27, No. 1, pp. 37-50, 1997.
    24. D. Bonen, and S. L. Sarkar, The superplasticizer adsorption capacity of cement pastes, pore solution composition and, parameters affecting flow loss, Cement and Concrete Research, Vol. 25, No. 7, pp. 1423-1434, 1995.
    25. R. A. Day, Jr. and A. L. Underwood, Quantitative Analysis, 6th ed., Prentice Hall, 1991.
    26. E. Sakia and J. Sugita, Composite mechanism of polymer modified cement, Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135, 1995.
    27. F. Basile and S. Biagini, Influence of different sulfonated naphthalene polymers on the fluidity of cement pastes, CANMET/ACI international conference, ACI publication, SP 119-11, 1989.
    28. P. J. Anderson and D. M. Roy, The effect of superlasticizer molecular weight on its adsorption on, and dispersion of, cement, Cement and Concrete Research, Vol.18, pp. 980-986, 1988.
    29. J. J. Chiu, S. D. Chen. and K. C. Hsu, Effect of addition time of a superplasticizer on its cement adsorption and concrete workability, Proceedings of International Symposium on High Performance and reactive Powder Concrete, Vol. 1, pp. 287-299, 1998.
    30. G. Chiocchio and A. E. Paolini, Optimum time for adding superlasticizers to portland cement pastes, Cement and Concrete Research, Vol. 15, pp.901-908, 1985.
    31. D. Larrard, A method for proportioning high-strength concrete admixture, Cement and Concrete Aggregates, Vol.12, pp. 47-52, 1990.
    32. P. Faucon, J. M. Delaye, J. Virlet, J. F. Jacquinot and F. Adenot, Study of the structural properties of the C-S-H(Ⅰ) by molecular dynamics simulation, cement and Concrete Research, Vol. 27, No. 10, pp. 1581-1590, 1997.
    33. M. J. Hwang, T. P. Stockfisch and A. T. Hagler, Derivation of class Ⅱ force field. 2. Deviation and characterization of a class Ⅱ force field, CFF93, for the alkyl functional group and alkane molecules, J. Am. Chem. Soc., Vol. 116, pp. 2515-2525, 1994
    34. L. M. Stephen , D. O.Barry and W. A. Goddard Ⅲ, DREIDING: A generic force field for molecular simulations, J. Phys. Chem., 94, 8897-8909, 1990
    35. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Ⅲ and W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114, 10024-10035, 1992
    36. R. G. Mortimer, Physical Chemistry, The Bemjamin/Cummings, pp. 567-578, 1993.
    37. R. G. Mortimer, Physical Chemistry, The Bemjamin/Cummings, pp. 335-342, 1993.
    38. R. G. Mortimer, Physical Chemistry, The Bemjamin/Cummings, pp. 687-689, 1993.
    39. A. K. Rappe and W. A. Goddard Ⅲ, Charge equilibration for dynamic simulations, J. Am. Chem. Soc., 95, 3358-3363, 1991
    40. R. G. Mortimer, Physical Chemistry, The Bemjamin/Cummings, pp. 557-560, 1993.
    41. 程長遠, 王伯昌, 李桂仁, 蔡勝富, 模擬聚合物分子在氧化鋁表面的吸附現象( I ), Chemistry (The Chinese Chem. Soc. Taiwan China). Vol. 53, No. 4, pp. 351-358, 1995.

    無法下載圖示
    QR CODE