簡易檢索 / 詳目顯示

研究生: 陳柏均
Chen, Po-Chun
論文名稱: 製備銀奈米島狀薄膜及螢光增強測試
Development of silver nano-island film for metal-enhanced fluorescence
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 54
中文關鍵詞: 表面電漿共振金屬增強螢光銀奈米島狀薄膜
英文關鍵詞: localized surface plasmon resonance, metal-enhance fluorescence, silver nano-island film
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.033.2018.B05
論文種類: 學術論文
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,金屬奈米材料合成方法眾多,本實驗是利用無電電鍍法製備銀奈米島狀薄膜(Silver-Island Films,SIFs),以液相二次生長法,並用奈米金的晶種為基底,前驅物為硝酸銀(Silver nitrate),並以葡萄糖(D-glucose)為還原劑生長銀奈米島狀薄膜。金屬增強螢光(Metal-Enhanced fluorescence,MEF)已有許久的歷史,金屬增強螢光受到許多研究人員的矚目及被廣泛的利用,由於金屬材料的局部表面電漿共振(localized surface plasmon resonance,LSPR)效應,且具有LSPR的奈米銀島狀薄膜與表面螢光分子streptavidin-IR800互相作用,使得螢光訊號放大。為了得到螢光值最佳放大倍率,測試一系列的條件:硝酸銀濃度、氨水濃度、反應時間、不同的表面修飾。測試結果為硝酸銀為500μM、氨水濃度為39.25mM、反應時間為5分鐘時,並且以硫十一醇(11-mercapto-1-undecanol,11-MUD)修飾銀奈米島狀薄膜表面,得到最高的螢光值,螢光增強倍率為456倍。成功的在玻璃片上,生長銀奈米島狀薄膜,其優點為快速、且對環境無害。由於此薄膜具有螢光訊號放大的效果,所以銀奈米島狀薄膜可以應用於生化檢測。

    Recently , there are many methods for synthesis nano-meterials. In this experiment,we use electroless plating to prepare silver nano-island film. First , we grow gold nanoparticles for seeds,and then we grow silver nano-islands. Metal-enhanced fluorescence has been attracted and invested by many researchers many years. Due to the localized surface plasmon resonance (LSPR) effect of the nano-metal material, the silver nano-island film with LSPR interacts with the surface fluorescent molecule streptavidin-IR800, resulting in the fluorescence amplification. In order to obtain the best fluorescence magnification, a series of conditions were tested, silver nitrate concentration, ammonia concentration, reaction time, and different surface modifications. The result was that the concentration of silver nitrate was 500 μM, the concentration of ammonium hydroxide solution was 39.25mM , the reaction time was 5 minutes, and the surface of the silver nano-island film was modified with 11-mercapto-1-undecanol (11-MUD) to obtain the highest fluorescence. The fluorescence of streptavidin-IR800 magnification is about 456 times.Successfully, we grow the silver nano-island on the glass substrate. The advantage is fast and harmless to the environment. Due to the film has a fluorescence magnification effect, the silver nano-island film can be applied to biochemical detection.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1奈米材料簡介 1 1-2製備奈米材料方法 3 1-3奈米材料之應用 5 第二章 文獻回顧與研究動機 7 2-1局域表面電漿共振 7 2-2金屬增強螢光 8 2-3生物素與鏈親和素 12 2-4金屬奈米粒子 13 2-5研究目的與動機 15 第三章 實驗儀器與步驟 16 3-1實驗藥品 16 3-2實驗器材及儀器介紹 18 3-2-1迴轉式恆溫水槽(B601D) 18 3-2-2恆溫循環水槽(FIRSTEK B401H) 18 3-2-3玻片迷你微量離心機 19 3-2-4 16孔盤(FAST frame slide holders) 19 3-2-5迴轉式震盪器(OS-701) 20 3-2-6 紫外光-可見光/近紅外光光譜儀(UV-Visible/NIR spectrophotometer) 20 3-2-7掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 21 3-2-8微陣列螢光掃描儀(Microarray Fluorescence Scanning Device) 22 3-3製備奈米銀島狀薄膜流程圖 23 3-4實驗步驟 24 3-4-1製備銀奈米島狀薄膜 24 3-4-2銀奈米島狀薄膜之修飾 25 3-4-3修飾螢光物質streptavidin-IR800 26 第四章 結果與討論 27 4-1銀奈米島狀薄膜分析 27 4-2銀奈米島狀薄膜之表面形貌與LSPR性質 29 4-2-1反應時間對銀奈米島狀薄膜之影響 29 4-2-2前驅物硝酸銀對銀奈米島狀薄膜之影響 31 4-2-3氨水對銀奈米島狀薄膜之影響 33 4-2-4修飾不同硫醇對銀奈米島狀薄膜之影響 35 4-3奈米銀島狀薄膜之螢光增強測試 37 4-3-1螢光增強測試分析 37 4-3-2反應時間的螢光增強測試 39 4-3-3前驅物硝酸銀濃度的螢光增強測試 41 4-3-4氨水濃度的螢光增強測試 43 4-3-5表面修飾不同硫醇的螢光增強測試 45 4-3-6奈米銀島狀薄膜穩定度測試 48 第五章 結論與未來展望 49 第六章 參考文獻 50

    1. 牟中原、陳家俊,科學發展 2000,28(4),281-288.

    2. 張立德,Nanomaterial奈米材料 2002,83-97.

    3. 劉吉平、郝向陽,奈米科學與技術 2003,26-90.

    4. Peiris, S.; McMurtrie, J.; Zhu, H. Y. Catal. Sci. Technol. 2016, 6, 320−338.

    5. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.

    6. Ni, F.; Cotton, T. M. Anal. Chem. 1986, 58, 3159-3163.

    7. Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D. J. Fluoresc. 2007, 17, 627-631.

    8. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. J. Fluoresc. 2005, 15, 643-654.

    9. Shang, L.; Chen, H.; Dong, S. J. Phys. Chem. C 2007, 111, 10780-10784.

    10. Abel, B.; Coskun, S.; Mohammed, M.; Williams, R.; Unalan, H. E.; Aslan, K. J. Phys. Chem. C 2015, 119, 675-684.

    11. Zhang, J.; Chowdhury, M. H.; Lakowicz, J. R. Nano Lett. 2007, 7, 2101-2107.

    12. Choudhury, S. D.; Badugu, R.; Ray, K.; Lakowicz, J. R. J. Phys. Chem. C 2012, 116, 5042-5048.

    13. Gole, A.; Murphy, C. J. Langmuir 2005, 21, 10756-10762.

    14. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914-13915.

    15. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109 (8), 3157-3162.

    16. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109, 6247-6251.

    17. Tabakman, S. M.; Chen, Z.; Sanchez Casalongue, H.; Wang, H.; Dai, H. Small 2011, 7, 499-505.

    18. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H. Nat. Commun. 2011, 2, 466-474.

    19. Sanchez-Iglesias, A.; Aldeanueva-Potel, P.; Ni, W.; Perez-Juste, J.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Mbenkum, B. N.; Liz-Marzan, L. M. Nano Today 2010, 5, 21-27.

    20. Kruss, S.; Srot, V.; Aken, P. A.; Spatz, J. P. Langmuir 2012, 28, 1562-1568.

    21. Tiani, D. J.; Pemberton, J. E. Langmuir 2003, 19, 6422-6429.

    22. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2007, 129, 1524-1525.

    23. Huang, C. J.; Ye, J.; Wang, S.; Stakenborg, T.; Lagae, L. Appl. Phys. Lett. 2012, 100, 173114.

    24. Khlebtsov, B.; Khanadeev, V.; Panfilova, E.; Bratashov, D.; Khlebtsov, N. ACS Appl. Mater. Interfaces 2015, 7, 6518-6529.

    25. Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y. H.; Zhang, L.; Li, L. J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; Maier, S. A. Nat. Commun. 2016, 7, 11283

    26. Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, K. V.; Alford, N. M.; Ryan, M. P.; Xie, F. J. Mater. Chem. C 2017, 5(4), 917-925.

    27. Fu, Y.; Zhang, J.; Lakowicz, J. R. Chem. Commun. 2012 , 48, 9726-9728.

    28. Szmacinski, H.; Badugu, R.; Mahdavi, F.; Blair, S.; Lakowicz, J. R. J. Phys. Chem. C 2012, 116, 21563-21571.

    29. Zhang, T.; Gao, N.; Li, S.; Lang, M. J.; Xu, Q. H. J. Phys. Chem. Lett. 2015, 6, 2043-2049.

    30. Oh, Y. J.; Jeong, K. H. Adv. Mater. 2012, 24, 2234-2237.

    31. Grzelak, J.; krajewska, A.; Krajnik, B.; Jamiola, D.; Choma, J.; Jankiewicz, B.; Piatkowski, D.; Nyga, P.; Mackowski, S. Nanospectroscopy 2016, 2, 1-6.

    32. Wang, X. Y.; He, F.; Zhu, X.; Tang, F.; Li, L. D. Sci. Rep. 2014, 4, 4406-4411.

    33. Zhang, R.; Wang, Z.; Song, C.; Yang, J.; Sadaf, A.; Cui, Y. J. Fluoresc. 2012, 23, 71-77.

    34. Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Nano Research 2018, 11(2), 953-965.

    35. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Nano Lett. 2005, 5, 1569-1574.

    36. Shen, Y.; He, T.; Wang, W.; Zhan, Y.; Hu, X.; Yuan, B.; Zhou, X. Nanoscale 2015, 7, 20132-20141.

    37. Bonyár, A.; Csarnovics, I.; Veres, M.; Himics, L.; Csík, A.; Kámán, J.; Balázs, L.; Kökényesi, S. Procedia Engineering 2016, 168, 1152-1155.

    38. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D. Current Opinion in Biotechnology 2005, 16 (1), 55-62.

    39. Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. Nat. Photonics 2009, 3, 654-657.

    無法下載圖示 本全文未授權公開
    QR CODE