簡易檢索 / 詳目顯示

研究生: 邱彥超
Chiu, Yen-Chao
論文名稱: 模式解析度對 WRF 區域氣候模式中熱帶風暴活動模擬的影響
Effects of Model Resolution on the Simulation of Tropical Storm Activities in WRF Regional Climate Model
指導教授: 鄒治華
Tsou, Chih-Hua
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 區域氣候模式水平解析度熱帶風暴
論文種類: 學術論文
相關次數: 點閱:231下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水平模式解析度可能是影響模式模擬熱帶風暴(Tropical Storm, TS)活動之重要因素之一。本研究採用Weather Research and Forecasting (WRF)區域氣候模式,研究範圍包含西北太平洋、印度洋及青藏高原(45°E-180°E,20°S-40°E)。研究解析度對此WRF-RCM模擬TS氣候活動之影響,設計兩部分的實驗。實驗一:選定30km、50km及100km三組水平解析度,進行2000-2010年6-11月TS氣候活動模擬。實驗二:增加2002年及2005年7-9月10km解析度之模擬,進行TS強度模擬。探討模式解析度對WRF-RCM模式中TS活動的影響。
    結果顯示,100km解析度,能掌握TS之軌跡通過頻率,卻嚴重低估TS的生成頻率,此結果類似大多數的GCM模式。當解析度提升至50km時,TS的生成頻率模擬能力能有所提升,但仍然無法掌握TS生成頻率之年際變化。而當解析度提升至30km時,TS的通過頻率、生成頻率與生成頻率之年際變化,皆能有不錯的表現。但30km模擬嚴重低估TY4-TY5生成頻率,當解析度提升至10km時可以明顯改善TY4生成頻率,但TY4生成頻率仍低於觀測。
    TS主要生成在海溫高、低層正渦度大、中層相對濕度高與垂直風切小的季風槽與輻合區。四組水平解析度模擬均可掌握此TS生成位置與大尺度環境條件場之關係。100km模擬中,地形阻擋效應差,在東南亞島嶼一代明顯高估高低層穿越赤道流風速,造成西北太平洋高低層垂直風切變大,且渦度中心、強降水區及季風合流區偏北偏東,有利TS生成區域變小。隨解析度增加至50km及30km,地形阻擋效應及降水分怖逐漸改善,環境場、TS生成位置及生成頻率模擬接近觀測。
    強的TS生成位置偏東南、生命史較長、生成後多數向西北移動與風速改變率較大。四組水平解析度模擬均可掌握強的TS生成位置偏東及生命史較長之特徵。100km模擬中,強的TS生成位置偏北,路徑以向西移動為主。隨解析度增加至50km、30km及10km,強的TS生成位置與路徑模擬與觀測相似。100km、50km及30km模擬,嚴重低估強的TS風速改變率,造成TY4-TY5生成頻率嚴重低估。隨解析度增加至10km,強的TS移動路徑環境條件場較30km模擬有利TS發展,強的TS風速改變率及TY4生成頻率明顯改善,但仍低於觀測。

    摘要 I 致謝 II 目錄 III 圖表目錄 V 第一章 前言 1 第二章 資料 6 2.1 環境場觀測資料 6 2.2 熱帶風暴觀測資料 7 第三章 WRF氣候模式與實驗設計 9 3.1 模式介紹 9 3.2 模式初始場及邊界資料 10 3.3 模式參數設定 11 3.4 實驗設計 12 3.4.1 區域氣候模式所模擬之範圍 13 3.4.2 實驗一:基本的熱帶風暴氣候特性模擬 14 3.4.3 實驗二:強度模擬 15 3.5 各解析度模擬中的地形 15 3.6 模式中熱帶風暴之篩選方法 16 第四章 熱帶風暴於不同解析度WRF區域氣候模式的活動 20 4.1 熱帶風暴生成位置模擬 20 4.2 熱帶風暴頻率模擬 21 4.3 熱帶風暴強度模擬 22 4.4 模式中熱帶風暴氣候活動小結 24 第五章 解析度對熱帶風暴活動模擬之影響 26 5.1 西北太平洋地區熱帶風暴生成與氣候環境條件 26 5.2 西北太平洋地區環境條件分佈之原因 32 第六章 熱帶風暴強度實驗 37 6.1 強弱熱帶風暴之間差異分析 37 6.2 影響模式中熱帶風暴發展原因 44 第七章 結論 47 參考文獻 54 附圖表 61 附錄 一 83 附錄 二 84 附錄 三 85

    林建男, 2011: 季風槽及熱帶氣旋活動模擬於 WRF 30公里解析度區域氣候模式. 臺灣師範大學地球科學系學位論文, 1-44.
    黃清勇, and 趙子瑩, 2013: 西南季風對莫拉克颱風降雨模擬之影響. 大氣科學, 41 , 91-115.
    蔡孟光, 2013: 颱風數量年際變化之模擬與機制探討── WRF30 公里解析度區域氣候模式. 臺灣師範大學地球科學系學位論文, 1-63
    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, . . . D. Bolvin, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorology, 4, 1147-1167.
    Ahrens, C. D., 2012: Meteorology today: an introduction to weather, climate, and the environment. Cengage Learning.
    Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service,National Geophysical Data Center, Marine Geology and Geophysics Division.
    Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus A, 59, 396-416.
    Camargo, S. J., and A. H. Sobel, 2004: Formation of tropical storms in an atmospheric general circulation model. Tellus A, 56, 56-67.
    ____, S. J., M. Ting, and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 1515-1529.
    Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143-152.
    Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 5709-5720.
    Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466-484.
    Chou, C., 2003: Land-sea heating contrast in an idealized Asian summer monsoon. Climate Dyn., 21 , 11-25.
    Chu, H., and R. Wu, 2013: Environmental influences on the intensity change of tropical cyclones in the western North Pacific. Acta. Meteor. Sinica, 27, 335-343.
    Colbert, A. J., B. J. Soden, and B. P. Kirtman, 2015: The Impact of Natural and Anthropogenic Climate Change on Western North Pacific Tropical Cyclone Tracks*. J. Climate, 28, 1806-1823.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
    Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721.
    Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143-1155.
    ____, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347-367.
    Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Atlantic, 58, 12.
    Gray, W. M., 1967: The mutual variation of wind, shear, and baroclinicity in the cumulus convective atmosphere of the hurricane. Mon. Wea. Rev., 95.
    ____, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
    ____, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Sciences Paper 234, Colorado State University, Ft. Collins, CO, 121 pp. Meteorology over the Tropical Oceans, 155-218.
    ____, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans, 77, 155-218.
    ____, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37-69.
    Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 31-38.
    Ha, Y., Z. Zhong, X. Yang, and Y. Sun, 2013: Different Pacific Ocean warming decaying types and Northwest Pacific tropical cyclone activity. J. Climate, 26, 8979-8994.
    Ha, K.-J., S.-J. Yoon, K.-S. Yun, J.-S. Kug, Y.-S. Jang, and J. C. L. Chan, 2012: Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific. Theor. Appl. Climatol., 109, 383-395.
    Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767-1776.
    Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmospheric Sci., 42, 129-151.
    ____, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120.
    ____, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
    Hsu, P.-C., and T. Li, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-scale Disturbances over the Western North Pacific. Part II: Apparent Heat and Moisture Sources and Eddy Momentum Transport*. J. Climate, 24, 942-961.
    ____, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part I: Energetics Diagnosis*. J. Climate, 24, 927-941.
    Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477-3495.
    ____, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 1018-1020.
    ____, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 1549-1565.
    ____, T. R., J. J. Sirutis, G. A. Vecchi, S. Garner, M. Zhao, H.-S. Kim, . . . G. Villarini, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 6591-6617.
    Lacis, A. A., and J. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118-133.
    Lee, C.-S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 2006-2022.
    Manabe, S., J. L. Holloway Jr, and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580-613.
    Manganello, J. V., K. I. Hodges, J. L. Kinter III, B. A. Cash, L. Marx, T. Jung, . . . B. Huang, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 3867-3893.
    ____, J. V., K. I. Hodges, B. Dirmeyer, J. L. Kinter Iii, B. A. Cash, L. Marx, . . . E. L. Altshuler, 2014: Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM. J. Climate, 27, 7622-7646.
    McTaggart-Cowan, R., E. L. Davies, J. G. Fairman Jr, T. J. Galarneau Jr, and D. M. Schultz, 2015: Revisiting the 26.5°C Sea Surface Temperature Threshold for Tropical Cyclone Development. Bull. Amer. Meteor. Soc., 2015.
    Mizuta, R., K. Oouchi, H. Yoshimura, A. NODA, K. KATAYAMA, S. YUKIMOTO, . . . M. NAKAGAWA, 2006: 20-km-mesh global climate simulations using JMA-GSM model-Mean climate states. J. Metero. Soc. Japan, 84, 165-185.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.
    Murakami, H., T. Li, and M. Peng, 2013: Changes to environmental parameters that control tropical cyclone genesis under global warming. Geophys. Res. Lett., 40, 2265-2270.
    Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71 , 4308-4320.
    Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Metero. Soc. Japan, 84, 259-276.
    Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857-861.
    Penny, A. B., P. A. Harr, and M. M. Bell, 2015: Observations of a non-developing tropical disturbance in the western North Pacific during TCS-08 (2008). Mon. Wea. Rev.
    Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, . . . D. Behringer, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91 , 1015-1057.
    Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697.
    Smith, T. M., and R. W. Reynolds, 2004: Reconstruction of monthly mean oceanic sea level pressure based on COADS and station data (1854-1997). J. Atmos. Ocean. Technol., 21, 1272-1282.
    Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133-152.
    Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Metero. Soc. Japan, 80, 249-272.
    Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu, 2014: The Role of Multiscale Interaction in Synoptic-Scale Eddy Kinetic Energy over the Western North Pacific in Autumn. J. Climate, 27, 3750-3766.
    Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745-760.
    ____, F., D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16, 3932-3945.
    Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307-2314.
    Wang, B., 2006: The asian monsoon. Springer Science & Business Media.
    Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67-90.
    Webster, P. J., 1987: The variable and interactive monsoon. Monsoons.Wiley, New York, 269.
    Wu, L., and B. Wang, 2004: Assessing Impacts of Global Warming on Tropical Cyclone Tracks*. J. Climate, 17, 1686-1698.
    Ye, D., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14-19.
    Ye, D.-Z., and G.-X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181-198.
    Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Metero. Soc. Japan, 84, 405-428.
    Young, J. A., 1987: Physics of monsoons: the current view. Monsoons. Wiley, New York, 211-243.
    Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Metero. Soc. Japan, 79, 23-35.
    Zong, H., and L. Wu, 2015: Synoptic-scale Influences on Tropical Cyclone Formation within the Western North Pacific Monsoon Trough. Mon. Wea. Rev.

    下載圖示
    QR CODE