研究生: |
潘冠佑 Guan-You Pan |
---|---|
論文名稱: |
模糊量測理論應用於自走車行走控制 Fuzzy Measure Based Mobile Robot Controller for Autonomous Movement Control |
指導教授: |
王偉彥
Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 模糊量測 、模糊積分 、模糊分類器 、移動式自走車 、超音波感測器 |
英文關鍵詞: | fuzzy measure, fuzzy integral, fuzzy classifier, mobile robot, ultrasonic sensor |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的在於設計一具有避障功能之自走車,文中所使用模糊量測方法搭配移動式自走車(Pioneer 3-DX)改善超音波感測器不準確的特性,將超音波感測器做為模糊量測系統的輸入,做閃避障礙物判斷的依據,讓自走車在未知空間中進行閃避障礙物與沿牆行走等功能,將自走車的行走路徑紀錄起來,並且使用超音波感測器對自走車移動時所經過的環境做建構。論文中使用 Visual Studio OPEN GL 撰寫模擬程式,在模擬中行走於方形與圓形等未知環境,佐證模糊量測理論使用於自走車上實行閃避障礙物的可行性,並比較未加上模糊量測時自走車的行走狀況,最後以實作的方式,驗證模糊量測理論運用在自走車上的行走效能,在有加上模糊量測理論的路徑會比未加上模糊量測理論時更加穩定。
The major purpose of this thesis is to design an mobile robot that is able to keep away from obstacles. The fuzzy measure methods used in the thesis applied on movable mobile robot (Pioneer 3-DX) improve the features of the inaccuracy of ultrasonic sensor. The ultrasonic sensor will be used as the input of fuzzy measure system. The output will be introduced to fuzzy measure as the determination for the principle of averting obstacles, so that the mobile robot can move in unknown space to dodge obstacles and move along walls. The moving routes of mobile robot can be recorded, and established the map used ultrasonic sensors. In the thesis, a program is written by Visual Studio OPEN GL for simulation. The feasibility that the fuzzy measure theory based on mobile robot to dodge obstacles was verified with various unknown space, and compared the running of mobile robot that is not included with fuzzy measure. Finally, the running results when fuzzy measure theory is applied on mobile robot are analyzed to verify the performance of fuzzy measure theory used on mobile robot. The results show that using the fuzzy measure controller exhibits a better performance movement behavior than that using a controller without fuzzy measure.
[1] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211–221, Apr. 2007.
[2] C. L. Hwang, L. J. Chang, and Y. S. Yu, “Network-based fuzzy decentralized sliding-mode control for car-like mobile robots,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 574–585, Feb. 2007.
[3] I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of embedded DSP-based fuzzy controllers for autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 928–936, Feb. 2008.
[4] A. Zhu and S. X. Yang, “Neurofuzzy-based approach to mobile robot navigation in unknown environments,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 4, pp. 610–621, Jul. 2007.
[5] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 898–905, Jun. 2005.
[6] T. Fukuda and N. Kubota, “An intelligent robotic system based on fuzzy approach,” Proc. IEEE, vol. 87, pp. 1448–1470, Aug. 1999.
[7] F. Hoffmann and G. Pfister, “Evolutionary design of a fuzzy knowledge base for a mobile robot,” Int. J. Approx. Reason., vol. 17, no. 4, pp. 447–469, 1997.
[8] Y. Ando and S. Yuta, “Following a wall by an autonomous mobile robot with a sonar-ring,” IEEE International Conference on Robotics 2nd Automation, 1995.
[9] Z. Yi and L. Yuan, “Application of fuzzy neural networks in data fusion for mobile robot wall-following,” Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 6580-6583, June 2008.
[10]S. Fazli and L. Kleeman, “Wall Following and obstacle avoidance results from a multi-DSP sonar ring on a mobile robot,” Proceedings of the IEEE International Conference on Mechatronics & Automation, pp. 432-437, July 2005.
[11]F. Cupertino, V. Giordano, D. Naso, and L. Delfine, “Fuzzy control of a mobile robot,” IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 74-81, Dec. 2006.
[12]C. F. Juang, and C. H. Hsu, “Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, Octorber, 2009.
[13]Y. Narukawa, T. Murofushi, and M. Sugeno “Regular fuzzy measure and representation of comonotonically additive functional,”Fuzzy Sets and Systems, vol. 112, pp.177-186, 2000.
[14]Radko Mesiar, “Fuzzy measures and integrals,” Fuzzy Sets and Systems, vol. 156 pp. 365–370, 2005.
[15]Ralescu D. A., and Adams G. ”Fuzzy integral. ” Journal of Mathematical Analysis and Applications, 75(2): 562-570, 1980.
[16]Sugeno M. 1974. Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology
[17]A. Mesiarová-Zemánková, R. Mesiar, and K. Ahmad “The balancing choquet integral,”Fuzzy Sets and Systems, vol. 161, pp. 2243-2255, 2010.
[18]T. Y. Chen and T. C. Ku, “Importance-assessing method with fuzzy number-valued fuzzy measures and discussions on TFNs And TrFNs,” International Journal of Fuzzy Systems, vol. 10, no. 2, June 2008.
[19]D. Y. Yeh, C. H. Cheng, and C. T. Peng “Fuzzy performance evaluation model: an example on interns,” Journal of Human Resource Management, vol. 6, no. 2, pp. 071- 087, 2006.
[20]M. C. Chuang, L. P. Wang, and L. P. Wang, “Using fuzzy integral for evaluation of portal website service quality,” Operations Research Society of Taiwan Conference, 2009.
[21]Chen, Y. W. and Tzeng, G. H.(2001), “Using fuzzy integral for evaluation subjectively perceived travel costs in a traffic assignment model,” European Journal of Operational Research, 130, pp.653-664.
[22]H. C. Liu, “An improved fuzzy measure based on λ-measure and Its fuzzy integrals,” Journal of Educational Measurement and Statistics, vol. 14, 2006.
[23]K. Ishii, and M. Sugeno, “A model humanevaluation process using fuzzy measure,” International Journal of Man-Machine Studies, pp.19-38, 1985.
[24]R. A. Brooks. "A robust layered control system for a mobile robot". IEEE Journal of Robotics and Automation, pp.14-23, 1986.
[25]K. Watanabe, “Control of an omni-directional mobile robot,” Proceedings of Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 51-60, 1998.
[26]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, June 1965.
[27]H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers”, IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, February 2007.
[28]Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
[29]Polaroid, Technical Specifications for 6500 Series Sonar Ranging Module,1999.
[30]王文俊,“認識 Fuzzy-第二版“,全華科技圖書出版社,民國86年10月。
[31]王立新,“模糊理論與應用”,全威圖書有限公司,民國95年11月。
[32]盧明智,盧鵬任,“感測器應用與線路分析”,全華,2001年。
[33]蔡自興、賀漢根、陳虹,“未知環境中移動機器人導航控制理論與方法“,
科學出版社,2009年。
[34]陳巧茵,“小型自走車以超音波避障之研究”,國立成功大學工程科學研究所碩士論文,民國91年。
[35]顧高至,“智慧型多功能自走車之研發”, 國立成功大學工程科學研究所碩士論文,民國92年。
[36]林于婉,“以超音波感測器建立自走車環境地圖之研究”, 國立成功大學工程科學研究所,碩士論文,民國94年。
[37]徐進浩“以向量空間為基礎之自動導航車路徑規劃”,龍華科技大學工程技術研究所,碩士論文,民國95年。
[38]陳秉宏,“超音波感測資訊融合之位之環境地圖建立”,淡江大學電機工程學系,碩士論文,民國98年。
[39]張家瑋,“研製具有探索未知室內環境功能之影像導航自走車”,聖約翰科技大學電機工程學系,碩士論文,民國98年。
[40]高嘉良,“移動機器人之階層模糊邏輯控制”,國立臺灣師範大學工業教育學系,碩士論文,民國99年。
[41]張原華,“植基於模糊法則之室內機器人導航設計”, 國立臺灣師範大學應用電子科技學系,碩士論文,民國99年。
[42]機器人世界情報網http://www.robotworld.org.tw/
[43]iRobot公司http://www.irobot.com
[44]工業技術研究院http://www.itri.org.tw
[45]Wikipedia http://zh.wikipedia.org/wiki/Ultrasonic
[46] http://robots.mobilerobots.com/docs/all_docs/P3OpMan6.pdf