簡易檢索 / 詳目顯示

研究生: 李政毅
Li, Jheng-Yi
論文名稱: 窗型空調機的空氣分配器開發以及性能之研究
Development and Performance Study for Air Distributor on Window Type Air-Conditioner
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 117
中文關鍵詞: 窗型空調機空氣分佈冷氣能力除濕能力能源效率比
英文關鍵詞: window type air-conditioner, air distribution, cooling capacity, dehumidification capacity, energy efficiency ratio (EER)
DOI URL: https://doi.org/10.6345/NTNU202202255
論文種類: 學術論文
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對蒸發器回風氣流與表面溫度的分佈狀態開發出可提升窗型空調機性能的空氣分配器,並進行不同配置參數對於窗型空調機性能影響的相關研究。窗型空調機的性能測試參照CNS 14464的T1標準實施。此外為瞭解外氣溫度對於窗型空調機性能的影響,本研究額外增加30 ℃與40 ℃的外氣溫度條件進行窗型空調機的性能實驗。
    研究結果顯示,在所有測試條件之下,不同形式的空氣分配器均可明顯地提升窗型空調機的除濕能力且對於空調機的耗電量幾乎沒有影響。S3空氣分配器的冷氣能力、除濕能力以及能源效率比(EER)在外氣溫度30℃的提升率分別比原機高13.70%、59.63%與14.37%;在外氣溫度35℃的提升率分別比原機高6.19%、30.97%與6.75%;在外氣溫度40℃的提升率則分別比原機高5.57%、25.92%與5.84%。故本研究所提出最佳配置的窗型空調機空氣分配器(S3)確實能有效地提升窗型空調機的性能與用電效率。

    In this study, the air distributors (AD) for enhancing the performance of the window type air conditioner (WAC) was developed based on the distribution of the return airflow and the surface temperature of the evaporator, and the influence of different configuration parameters on the performance of the window type air conditioner were studied. The performance of WAC was tested under the T1 condition of CNS14464. In addition, in order to understand the effect of outdoor air temperature on the performance of WAC, an additional performance experiment of WAC was carried out by adding the outdoor air temperatures of 30 ℃ and 40 ℃.
    The results showed that all air distributors could significantly improve the dehumidification capacity of WAC and had little effect on the power consumption of WAC under all test conditions. The enhanced ratio of cooling capacity, dehumidification capacity and energy efficiency ratio (EER) of the WAC with air distributor of S3 was 13.70%, 59.63% and 14.37%, 6.19%, 30.97%, and 6.75%, and 5.57%, 25.92%, and 5.84% that compared with the original WAC at outdoor air temperature of 30, 35, and 40 ℃, respectively. Therefore, this study proposed the optimal configuration (S3) of the AD could effectively improve the performance and electricity efficiency of the WAC.

    摘要 i ABSTRACT iii 目次 v 表次 viii 圖次 v 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 1.4 論文架構 5 1.5 文獻回顧 5 第二章 理論分析與文獻探討 9 2.1 蒸氣壓縮循環冷凍系統 9 2.1.1 理想蒸氣壓縮冷凍循環系統 10 2.1.2 實際的蒸氣壓縮冷凍循環系統 12 2.1.3 蒸汽壓縮循環冷凍系統之熱力分析 14 2.1.4 冷媒的基本特性介紹 15 2.1.5 共沸與非共沸冷媒之特性 17 2.2 空氣調節系統 18 2.2.1 空氣調節系統簡介 18 2.2.2 空氣調節之熱力分析 20 2.3 空調機性能與測試標準 22 2.4 空調機提升性能的技術 26 第三章 實驗設計 29 3.1 實驗系統 30 3.1.1 環境控制 30 3.1.2 空調機測試機 34 3.1.3 量測裝置與配置 35 3.2 空調機性能實驗方法與實驗步驟 37 3.3 空氣分配器設計 39 3.4 空氣分配器選擇 46 3.5 量測儀器與設備 48 3.6 數據處理 58 3.7 誤差分析 60 第四章 結果與討論 63 4.1 CNS 14464下空氣側個狀態點性質之比較 64 4.2 CNS 14464空氣側性能比較 70 4.3 CNS 14464機械側各狀態點之比較 77 4.4 CNS 14464機械側性能比較 81 4.5 不同環境乾球溫度的整體性能之比較 85 4.6 節能效益評估 94 第五章 結論及建議 97 5.1 結論 97 5.2 建議 100 參考文獻 101 符號彙編 109 作者簡介 115

    [1] 吳嘉興、邱曉瑩,“台灣發展太陽光電產業之關鍵成功因素分析”,管理資訊計算,第78-95頁,第3卷,第2期,2014年。
    [2] 維基百科,世界能源消耗。取自http://zhm.100ke.info/wiki/%E4%B8%96%E7%95%8C%E8%83%BD%E6%BA%90%E6%B6%88%E8%80%97%E9%87%8F.
    [3] 維基百科,氣候變遷。取自https://zh.wikipedia.org/wiki/%E6%B0%A3%E5%80%99%E8%AE%8A%E9%81%B7.
    [4] KPMG,COP22:第22屆聯合國國際氣候大會重點整理,2016年11月。取自https://home.kpmg.com/tw/zh/home/insights/2016/11/cop22-weekly-summary.html.
    [5] 藍之青,“巴黎氣候會議:後《京都議定書》的時代轉捩點”,2015年11月23日。取自https://global.udn.com/global_vision/story/8663/1332141.
    [6] 維基百科,各國每年人均能量消耗列表。取自https://zh.wikipedia.org/zh-tw/%E5%90%84%E5%9B%BD%E6%AF%8F%E5%B9%B4%E4%BA%BA%E5%9D%87%E8%83%BD%E9%87%8F%E6%B6%88%E8%80%97%E5%88%97%E8%A1%A8.
    [7] 維基百科,國家電力消耗排名列表。取自https://zh.wikipedia.org/wiki/%E5%9C%8B%E5%AE%B6%E9%9B%BB%E5%8A%9B%E6%B6%88%E8%80%97%E6%8E%92%E5%90%8D%E5%88%97%E8%A1%A8.
    [8] Wikipedia, List of countries by energy intensity, from https://en.wikipedia.org/wiki/List_of_countries_by_energy_intensity.
    [9] 經濟部能源局,能源統計年報,2015。
    [10] 維基百科,2015年聯合國氣候變化大會。取自https://zh.wikipedia.org/wiki/2015%E5%B9%B4%E8%81%AF%E5%90%88%E5%9C%8B%E6%B0%A3%E5%80%99%E8%AE%8A%E5%8C%96%E5%A4%A7%E6%9C%83.
    [11] 經濟部統計處,工業生產調查。取自http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDA.aspx.
    [12] S. Peck and J. Richie, “Green roofs and the urban heat island effect,” Buildings., Cedar Rapids, IA 4, 2009.
    [13] 蘇俊連、鐘瑋琳、余坤庭,“變頻器應用於船舶海水冷卻泵之節能效益分析”,中國造船暨輪機工程學刊,第35-46頁,第32卷,第1期,2013年2月。
    [14] 林明鴻,“冷媒壓縮機變頻控制技術及應用”,冷凍與空調,第1期,第190-195頁,2000年2月。
    [15] 林明鴻,“節約能源技術(三)-空調與製程系統變頻控制實務應用”,冷凍與空調,第14期,第84-101頁,2002年4月。
    [16] 謝燕廷、謝文德,“淺談商用冷凍機變頻控制之研究”,冷凍與空調,第28期,第55-60頁,2004年8月。
    [17] 林師培、劉敏生、廖建順、韋宗楒,“VRF一對四異能力變頻空調機控制器開發”,冷凍空調&能源科技,第95期,第29-38頁,2015年10月。
    [18] C.S Kang, C.H Hyun, and M. Park, “Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings,” Appl Energy., vol. 155, no. 1, pp.270–283.Oct. 2015.
    [19] J. Liu, H. Zhou, X. Zhou, Y. Cao, H. Zhao, “August. Automotive air conditioning system control—a survey,” EMEIT. Harbin, Heilongjiang, China., pp. 08–12. Aug. 2011.
    [20] Y. Huang, A. Khajepour, F. Bagheri, and M. Bahrami, “Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems,” Appl Energy., vol. 184, no. 15, pp. 605–618.Dec. 2016.
    [21] Y. Huang, A. Khajepour, T. Zhu, and H. Ding, “A supervisory energy-saving controller for a novel anti-idling system of service vehicles,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 1037-1046, Nov. 2016.
    [22] Y. Huang, A. Khajepour, and H. Wang, “A predictive power management controller for service vehicle anti-idling systems without a priori information,” Appl Energy., vol. 182, no. 15, pp. 548-557, Nov. 2016.
    [23] Y. Huang, H. Wang, A. Khajepour, H. He, and J. Ji, “Model predictive control power management strategies for HEVs: a review,” Journal of Power Sources., vol. 341, pp. 91-106, Feb. 2017.
    [24] Y. B. Yang, M. D. Wu, and Y. C. Chang, “Temperature control of the four-zone split inverter air conditioners using LMI expression based on LQR for mixed H2/H1,” Applied Energy., vol. 113, pp. 912-823, Jan. 2014.
    [25] N. Wang, J. Zhang, and X. Xia, “Energy consumption of air conditioners at different temperature set points,” Energy and Buildings., vol. 65, pp.412-418, Oct. 2013.
    [26] X. Zhao, J. Sun, C. Wang, and Z. Zhang, “Experimental and numerical study of electronic module-cooling heat sinks used in a variable frequency air-conditioner outdoor unit,” international journal of refrigeration., vol. 38, pp. 10-21, Feb. 2014.
    [27] J. H. Yang, T. Kim, and C. H. Cheong, “Supply airflow control algorithm of a floor-standing room air-conditioner to achieve thermal comfort for residential housing in summer,” Building and Environment., vol. 59, pp. 227-238, Jan. 2013.
    [28] N. Liu, X. L. Lai, K. Yan, and H. Zhang, “Investigation of flow and heat transfer characteristics on different heat exchangers of air conditioner,” Applied Thermal Engineering., vol. 103, pp. 428–433, Jun. 2016.
    [29] A. A. Aganda, J.E.R. Coney, and C.G.W. Sheppard, “Air-flow maldistribution and the performance of a packagedair conditioning unit evaporator,” Applied Thermal Engineering., vol. 20, pp.515-528, Apr. 2000.
    [30] J. Gong, T. Gao, X. Yuan, and D. Huang, “Effects of air flow maldistribution on refrigeration system dynamicsof an air source heat pump chiller under frosting conditions,” Energy Conversion and Management., vol. 49, pp. 1645-1651, Jun. 2008.
    [31] L. Z. Zhang, “Flow maldistribution and thermal performance deterioration in a cross-flow air to air heat exchanger with plate-fin cores,” International Journal of Heat and Mass Transfer., vol. 52, pp. 4501-4509, Sep. 2009.
    [32] M. R. Kærna, W. Brix, B. Elmegaard, and L. F. S. Larsen, “Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators,” international journal of refrigeration vol. 34, pp. 696-706, May. 2011.
    [33] X. Song, D. Huang, X. Liu, and Q. Chen, “Effect of non-uniform air velocity distribution on evaporator performance and its improvement on a residential air conditioner,” Applied Thermal Engineering., vol. 40, pp. 284-293, Jul. 2012.
    [34] J.N. Mao, H.X. Chen a, H. Jia , Y.Z. Wang and H.M. Huc, “Effect of air-side flow maldistribution on thermal-hydraulic performance of the multi-louvered fin and tube heat exchanger,”International Journal of Thermal Sciences., vol. 73, pp. 46-57, Nov. 2013.
    [35] P. Blecich, “Experimental investigation of the effects of airflow nonuniformity on performanceof a fin-and-tube heat exchanger,” international journal of refrigeration., vol. 59, pp. 65–74, Nov. 2015.
    [36] W. J. Lee, and J. H. Jeong, “Heat transfer performance variations of condensers due to non-uniform air velocity distributions,” international journal of refrigeration., vol. 69, pp. 85-95, Sep. 2016.
    [37] W. J. Lee, H. J. Kim, and J. H. Jeong, “Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump,” International Journal of Heat and Mass Transfer., vol. 98, pp. 462–471. Jul. 2016.
    [38] 李懿庭,“微型化蒸氣壓縮循環電子散熱系統研究”,臺灣大學機械工程學系,碩士論文,2009年1月。
    [39] 謝文德、鍾弘道、張凱涵、王啓川,“冷凍冷藏系統熱回收文獻回顧”,冷凍空調與能源科技雜誌,第35-53頁,第65期,2010年10月。
    [40] 楊建裕、陳加偉、林福真,“冷凍空調節能技術發展規劃”,前瞻科技與管理,第25-40頁,第1卷,第2期,2011年11月。
    [41] L. Zhao, W. Cai, X. Ding, and W. Chang, “Model-based optimization for vapor compression refrigeration cycle,” Energy., vol. 55, no. 15, pp. 392-402, Jun. 2013.
    [42] X. Yang, L. Zhao, H. Li, and Z. Yu, “Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture,” Applied Energy., vol. 160, no. 15, pp. 912-919, Dec. 2015.
    [43] Y. T. Ge, S. A. Tassou, I. D. Santosa, and K. Tsamos, “Design optimisation of CO2 gas cooler/condenser in a refrigeration system,” Applied Energy., vol. 160, no. 15, pp. 973-981, Dec. 2015.
    [44] Y. Lu, Y. Wang, C. Dong, L. Wang, and A. P. Roskilly, “Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine,” Applied Thermal Engineering., vol. 91, no. 5, pp. 591-599, Dec. 2015.
    [45] L. Sun, W. Han, and H. Jin, “Energy and exergy investigation of a hybrid refrigeration system activated by mid/low-temperature heat source,” Applied Thermal Engineering., vol. 91, no. 5, pp. 913-923, Dec. 2015.
    [46] F. Wang, D.Y. Li, and Y. Zhou, “Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants,” Applied Thermal Engineering., vol. 91, no. 5, pp. 363-369, Dec. 2015.
    [47] G. Yan, J. Chen, and J. Yu, “Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle,” Applied Thermal Engineering., vol. 105, no. 15, pp. 509-517, Nov. 2015.
    [48] 日新興業株式會社。取自 http://www.nissin-ref.co.jp/technology/1-2.html
    [49] 許祺清、陳聰明,冷凍空調原理Ⅰ,弘揚圖書有限公司,2006年2月。
    [50] 許祺清、陳聰明,冷凍空調原理Ⅱ。弘揚圖書有限公司,2006年2月。
    [51] ASHRAE: Psychrometric Analysis, version 6. ASHRAE, Inc., 2009.
    [52] 空調系統節能管理與維護手冊。台北市政府編印。2011年12月。
    [53] 台灣三洋官方網站。取自http://www.sanyo.com.tw/s1504/sanyo_prodList.asp?ID1=1
    [54] 粘世和、黃致愷、余培煜,“R410A變頻空調機性能測試之運轉參數探討”,冷凍空調&熱交換,第34-43頁,第99期,2010年11月。
    [55] 經濟部國家標準檢驗局,CNS14464無風管空氣調節機與熱泵之試驗法及性能等級,2003。
    [56] 中華民國能源效率標示能源效率分級標示管理系統。取自 https://ranking.energylabel.org.tw/_outweb/gen/law/upt.asp?p0=41
    [57] 日立股份有限公司,何謂變頻空調機。取自 http://www.taiwan-hitachi.com.tw/technique/technique-4.aspx?t_id=9&id=76
    [58] 變頻供水泵是如何工作的?每日頭條。取自 https://kknews.cc/zh-tw/tech/95o33j.html
    [59] 智慧家居控制系統工作原理介紹。取自 http://www.imynest.com/content/16201.html
    [60] 經濟部能源局,能源報導-封面故事三。2009年7月。取自http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=200907&Page=11
    [61] 經濟部國家標準檢驗局,CNS15712-1空氣調節機與熱泵-季節性能因數測試與計算法-第1部:冷氣季節性能因數,2013。
    [62] 看能源效率CSPF 聰明買冷氣,中時電子報,2016年3月31日。取自http://www.chinatimes.com/newspapers/20160331000179-260210

    無法下載圖示 本全文未授權公開
    QR CODE