簡易檢索 / 詳目顯示

研究生: 王盈堤
Ying-Ti Wang
論文名稱: 植化素薑黃素藉由引發細胞凋亡促進新穎及傳統鉑金屬大腸直腸癌化療藥物之敏感性
Phytochemical curcumin enhances chemosensitivity of human colorectal cancer cells to novel and approved platinum-based anticancer drugs via induction of apoptosis
指導教授: 蘇純立
Su, Chun-Li
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 184
中文關鍵詞: 薑黃素細胞凋亡訊息傳遞鉑金屬化合物人類大腸直腸癌
英文關鍵詞: curcumin, apoptosis, signal transduction, platinum-based compound, human colorectal cancer
論文種類: 學術論文
相關次數: 點閱:378下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營養支持對於接受癌症治療的病人非常重要。透過營養素與臨床抗癌藥物的交互作用,營養素可能具有輔助或抑制藥物的效用,可能提高或降低癌症病人的治療效率,因此營養素的建議攝取對於藥物治療的效果有重要的角色。人類大腸直腸癌是目前第二大流行與致死率排行第三的癌症。然而在治療方法上除手術外,還有化學治療與放射線治療。化學治療藥物中包含鉑金屬化合物,如:cisplatin、carboplatin與oxaliplatin等。但化學治療藥物容易產生副作用,如:腎毒性、神經毒性、噁心嘔吐等,造成病患身體不適。為解決目前抗癌用藥抗藥性及副作用的困境,實驗想要藉由天然物薑黃素的輔助去降低新穎化合物或臨床藥物的使用劑量,進而解決困境。我們研究團隊從許多新穎合成的化合物中篩選出具有抗癌潛力的triazinone triepoxide TATT。藉由細胞毒殺試驗(MTT assay)得知triazinone triepoxide TATT比cisplatin、carboplatin或oxaliplatin對於人類大腸直腸癌細胞(HT-29)更具細胞毒殺或是抑制細胞生長的效用,對於人類正常臍靜脈內皮細胞(HUVEC),triazinone triepoxide TATT則比cisplatin、carboplatin或oxaliplatin有較低的毒性且較安全。進一步探討發現triazinone triepoxide TATT會引發HT-29之細胞凋亡(apoptosis)並對細胞週期造成影響。使用propidium iodide(PI)或annexin V染色,以流式細胞儀進行分析發現HT-29細胞經4 μM triazinone triepoxide TATT處理12小時後,細胞凋亡比例與G2/M期增加,處理24小時後,G2/M期減少而細胞凋亡比例持續增加。在同樣24小時4 μM條件之下,triazinone triepoxide TATT與cisplatin、carboplatin或oxaliplatin處理後的細胞相比,triazinone triepoxide TATT引發較多的細胞凋亡比例。進一步使用細胞凋亡機轉相關的抑制劑,如:caspase 8抑制劑Z-IETD-fmk及粒線體transition pore抑制劑cyclosporine A處理HT-29細胞,以annexin V染色進行流式細胞儀分析、西方點墨法、共軛焦顯微鏡與螢光顯微鏡分析,確認triazinone triepoxide TATT是透過caspase 8及粒線體相關蛋白質的內外路徑影響大腸直腸癌細胞產生細胞凋亡,並透過增加cyclin B1的表現與減少CDC25B與CDC25C的表現使G2/M期減少及sub-G1期的增加。進一步以薑黃素(30 μM)與triazinone triepoxide TATT(4 μM)處理HT-29細胞24小時後,以PI染劑或annexin V染色再以流式細胞儀進行分析,並透過Jin’s method公式計算出薑黃素與triazinone triepoxide TATT或oxaliplatin合併處理致使大腸直腸癌細胞產生凋亡具有加乘或協同的效果,但薑黃素與cisplatin或 carboplatin合併後效果為拮抗。本研究結果發現triazinone triepoxide TATT具有開發成為新一代的抗癌藥物的潛力,以提供癌症病患治療的不同選擇,期望能改善並提升醫療品質。在進行化療病人的飲食建議上,含薑黃素的食物,如:薑黃或咖哩等的攝取建議,可能會影響抗癌藥物的治療效果,值得再深入探討。其它天然植物與蔬果中之安全並有效的成分,如:苯甲基異硫、氰酸酯、木香烴內酯與酚類化合物白藜蘆醇等,對於藥物治療為輔助或抑制效果應有深入的了解。期望藉由飲食上增加補充或減少攝取天然物中的營養素,促使化療藥物發揮更好的治療效果。

    Nutritional support is very important for the patients undergoing cancer treatment. Through the interaction of nutrients with anti-cancer drugs, the efficacy of the treatment may be enhanced or inhibited. Therefore, dietary recommendation plays an vital role on the effects of the treatment. Human colorectal cancer is the second most popular and the third leading cause of death in cancers. Surgery, chemotherapy and radiation therapy are the common treatments, and platinum-based compounds such as: cisplatin, carboplatin and oxaliplatin are ordinary used. However, these chemotherapeutic drugs are likely to cause side effects and result in illness of the patients. In order to resolve the current plight of the anti-cancer drugs, a number of new synthetic compounds were screened and the anti-cancer potential of triazinone triepoxide TATT was discovered. Further study indicates that triazinone triepoxide TATT displays comparable anti-cancer effect on human colorectal cancer HT-29 cells. Nevertheless, triazinone triepoxide TATT displays relatively less cytotoxicity on normal human umbilical vein endothelial cells than cisplatin, carboplatin or oxaliplatin determined by the cytotoxicity MTT assay, suggesting that triazinone triepoxide TATT has lower toxicity and is more secure than the anti-cancer drugs. In addition, triazinone triepoxide TATT induced apoptosis and regulated cell cycle of HT-29 cells using propidium iodide (PI) or annexin V staining followed by flow cytometry. Of note is that when HT-29 cells were treated at 4 μM for 24 hours, triazinone triepoxide TATT exhibited greater effects than these anti-cancer drugs. Administration of caspase 8 inhibitor (Z-IETD-fmk) or mitochondrial transition pore inhibitor (cyclosporine A) followed by flow cytometry analysis, Western blotting, confocal microscopy and fluorescence microscopy confirmed that triazinone triepoxide TATT-induced apoptosis proceeded via caspase and mitochondrial pathways. triazinone triepoxide TATT-induced decrease in G2/M phase accompanied with the increase of cyclin B1. Addition of curcumin (30 μM) increased apoptosis of HT-29 cells and produced an additivity or synergistic effect on triazinone triepoxide TATT or oxaliplatin but resulted in an antagonistic effect on cisplatin or carboplatin using PI or annexin V staining followed by flow cytometry analysis and Jin's method to calculate the interaction of two agents. The results of this study indicates the anti-cancer potential of triazinone triepoxide TATT and triazinone triepoxide TATT may provide an alternative choice for treating cancer to improve the quality of medical care. Regarding to of the dietary recommendation for the patients with chemotherapy, suggestion of curcumin-rich foods, such as: turmeric or curry, etc., may affect the anti-cancer efficacy. Other phytochemicals, such as: benzene, methyl isothiocyanate, cyanate ester, costunolide and phenolic compounds resveratrol, etc., may also assist or inhibit the anti-cancer therapy. Further study is needed to understand the interactions of dietary supplements or the nutrients in natural products on chemotherapy to optimize the therapeutic effect.

    第一章 緒論 …………………………………………………………………… 1 第一節 大腸直腸癌 …………………………………………………………… 1 一、大腸直腸癌的流行與發生 ………………………………………………… 1 二、大腸直腸癌的治療 ………………………………………………………… 4 三、大腸直腸癌之臨床用藥及其副作用與治療困境 ………………………… 5 第二節 Triazinone triepoxide TATT與臨床抗癌用藥cisplatin、carboplatin和oxaliplatin ……………………………………………… 7 一、Triazinone triepoxide TATT …………………………………… 7 二、鉑金屬藥物 ………………………………………………………………… 9 第三節 鉑金屬藥物的抗癌機轉 ………………………………………………… 12 一、Cisplatin ……………………………………………………………… 12 二、Carboplatin …………………………………………………………… 12 三、Oxaliplatin …………………………………………………………… 13 第四節 薑黃素及其抗癌機轉 …………………………………………………… 14 第五節 合併使用薑黃素與鉑金屬藥物之抗癌機轉 …………………………… 16 第六節 計劃性細胞死亡 ………………………………………………………… 17 一、細胞自噬 …………………………………………………………………… 17 二、細胞自噬相關路徑 ………………………………………………………… 19 三、細胞壞死 …………………………………………………………………… 21 四、細胞凋亡 …………………………………………………………………… 22 第七節 細胞週期及其調控 ……………………………………………………… 37 第二章 研究目的 ……………………………………………………………… 40 第三章 材料與方法 …………………………………………………………… 42 第一節 儀器與材料 …………………………………………………………… 42 一、儀器(型號與廠商) ……………………………………………………… 42 二、材料 ………………………………………………………………………… 46 第二節 實驗方法 ……………………………………………………………… 51 一、細胞株之解凍、繼代培養及保存 ………………………………………… 51 二、藥物配製 …………………………………………………………………… 54 三、細胞存活分析(cell viability analysis) …………………… 55 四、西方墨點法(western blot analysis) …………………………… 56 五、細胞週期分析(cell cycle analysis) …………………………… 60 六、細胞早期凋亡分析(cell apoptosis analysis) ………………… 62 七、共軛聚焦顯微鏡(confocal microscope)觀察粒線體電位(△Ψm )的改變 …………………………………………………………………………… 63 八、收取細胞質蛋白質(cytosolic protein extraction)與粒線體蛋白質(mitochondrial protein extraction) …………………………… 64 九、收取細胞核內蛋白質(nuclear protein extraction) ………… 65 十、螢光顯微鏡觀察細胞產生凋亡小體的表現 ………………………………… 67 十一、統計分析 …………………………………………………………………… 69 第四章 結果 第一節 Triazinone triepoxide TATT對於人類大腸直腸癌細胞HT-29的毒性高,但對人類正常臍靜脈內皮細胞HUVEC毒性較低 ………………………… 71 第二節 Triazinone triepoxide TATT引發HT-29細胞產生細胞週期停止及細胞凋亡 ……………………………………………………………………………… 74 第三節 薑黃素使triazinone triepoxide TATT或臨床藥物引發HT-29細胞產生細胞膜內層外翻比例增加 ……………………………………………………… 80 第四節 薑黃素促進triazinone triepoxide TATT或臨床藥物合併引發HT-29細胞之細胞週期停止與細胞凋亡 ………………………………………………… 82 第五節 薑黃素促進triazinone triepoxide TATT或臨床藥物引發HT-29細胞凋亡具有加乘與協同效用 ………………………………………………………… 86 第六節 Triazinone triepoxide TATT造成細胞凋亡路徑中之caspase 8、caspase 3、caspase 7的活化 ……………………………………………… 88 第七節 透過caspase 8抑制劑Z-IETD-fmk了解外在路徑對於triazinone triepoxide TATT造成HT-29細胞凋亡的重要性 ………………………… 96 第八節 透過抑制劑cyclosporine A了解內在路徑對於triazinone triepoxide TATT造成HT-29細胞凋亡的重要性 …………………………… 101 第九節 Triazinone triepoxide TATT造成HT-29細胞粒線體膜電位改變的相關蛋白質 …………………………………………………………………………… 106 第十節 Triazinone triepoxide TATT造成HT-29細胞週期停止的相關蛋白質 …………………………………………………………………………………… 119 第十一節 Triazinone triepoxide TATT與薑黃素合併處理造成HT-29細胞核內蛋白質的變化 …………………………………………………………………… 124 第十二節 臨床藥物(casplatin、carboplatin與oxaliplatin)與薑黃素合併處理造成HT-29細胞核內蛋白質的變化 …………………………………… 129 第五章 討論 ……………………………………………………………………… 132 第六章 結論 ……………………………………………………………………… 141 第七章 參考文獻 ………………………………………………………………… 143 附錄 …………………………………………………………………………… 176

    Aggarwal, B. B., Banerjee, S., Bharadwaj, U., Sung, B., Shishodia, S., & Sethi, G. (2007). Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol, 73(7), 1024-1032.
    Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Adv Exp Med Biol, 595, 1-75.
    Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S. K., Shishodia, S., & Aggarwal, B. B. (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol, 69(1), 195-206.
    Alcindor, T., & Beauger, N. (2011). Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol, 18(1), 18-25.
    Andre, T., Boni, C., Navarro, M., Tabernero, J., Hickish, T., Topham, C., et al. (2009). Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol, 27(19), 3109-3116.
    Anto, R. J., Mukhopadhyay, A., Denning, K., & Aggarwal, B. B. (2002). Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 23(1), 143-150.
    Ashkenazi, A., & Dixit, V. M. (1998). Death receptors: signaling and modulation. [Review]. Science, 281(5381), 1305-1308.
    Azuine, M. A., Kayal, J. J., & Bhide, S. V. (1992). Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity. J Cancer Res Clin Oncol, 118(6), 447-452.
    A comparison of laparoscopically assisted and open colectomy for colon cancer. (2004). N Engl J Med, 350(20), 2050-2059.
    Baldwin, A. S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest, 107(3), 241-246.
    Baliga, B. C., Colussi, P. A., Read, S. H., Dias, M. M., Jans, D. A., & Kumar, S. (2003). Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. The Journal of biological chemistry, 278(7), 4899-4905.
    Belakavadi, M., & Salimath, B. P. (2005). Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol Cell Biochem, 273(1-2), 57-67.
    Biswal, B. M., Sain, A. H., Othman, N. H., & Baba, A. (2002). Adjuvant treatment in colorectal cancer. Experience from a referral center in eastern peninsular Malaysia. Trop Gastroenterol, 23(3), 134-137.
    Blommaert, F. A., van Dijk-Knijnenburg, H. C., Dijt, F. J., den Engelse, L., Baan, R. A., Berends, F., et al. (1995). Formation of DNA adducts by the anticancer drug carboplatin: different nucleotide sequence preferences in vitro and in cells. [Comparative Study Research Support, Non-U.S. Gov't]. Biochemistry, 34(26), 8474-8480.
    Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., et al. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. [Research Support, Non-U.S. Gov't]. Nature cell biology, 2(4), 241-243.
    Bonzon, C., Bouchier-Hayes, L., Pagliari, L. J., Green, D. R., & Newmeyer, D. D. (2006). Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell, 17(5), 2150-2157.
    Braakhuis, B. J., Snijders, P. J., Keune, W. J., Meijer, C. J., Ruijter-Schippers, H. J., Leemans, C. R., et al. (2004). Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. Journal of the National Cancer Institute, 96(13), 998-1006.
    Brabec, V., & Kasparkova, J. (2005). Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat, 8(3), 131-146.
    Briassouli, P., Chan, F., Savage, K., Reis-Filho, J. S., & Linardopoulos, S. (2007). Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res, 67(4), 1689-1695.
    Bucher, N., & Britten, C. D. (2008). G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer, 98(3), 523-528.
    Burlacu, A. (2003). Regulation of apoptosis by Bcl-2 family proteins. Journal of cellular and molecular medicine, 7(3), 249-257.
    Burnett-Hartman, A. N., Newcomb, P. A., & Potter, J. D. (2008). Infectious agents and colorectal cancer: a review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. [Review]. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(11), 2970-2979.
    Calvert, A. H., Harland, S. J., Newell, D. R., Siddik, Z. H., Jones, A. C., McElwain, T. J., et al. (1982). Early clinical studies with cis-diammine-1,1-cyclobutane dicarboxylate platinum II. Cancer Chemother Pharmacol, 9(3), 140-147.
    Campbell, F. C., & Collett, G. P. (2005). Chemopreventive properties of curcumin. Future Oncol, 1(3), 405-414.
    Carrington, P. E., Sandu, C., Wei, Y., Hill, J. M., Morisawa, G., Huang, T., et al. (2006). The structure of FADD and its mode of interaction with procaspase-8. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Molecular cell, 22(5), 599-610.
    Casellas, F., Borruel, N., Papo, M., Guarner, F., Antolin, M., Videla, S., et al. (1998). Antiinflammatory effects of enterically coated amoxicillin-clavulanic acid in active ulcerative colitis. Inflamm Bowel Dis, 4(1), 1-5.
    Chang, D. W., Xing, Z., Pan, Y., Algeciras-Schimnich, A., Barnhart, B. C., Yaish-Ohad, S., et al. (2002). c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The EMBO journal, 21(14), 3704-3714.
    Chauhan, D. P. (2002). Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des, 8(19), 1695-1706.
    Cheah, Y. H., Nordin, F. J., Sarip, R., Tee, T. T., Azimahtol, H. L., Sirat, H. M., et al. (2009). Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231. Cancer Cell Int, 9, 1.
    Chen, A., Xu, J., & Johnson, A. C. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 25(2), 278-287.
    Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res, 21(4B), 2895-2900.
    Christian, C. K., Kwaan, M. R., Betensky, R. A., Breen, E. M., Zinner, M. J., & Bleday, R. (2005). Risk factors for perineal wound complications following abdominoperineal resection. Dis Colon Rectum, 48(1), 43-48.
    Collett, G. P., Robson, C. N., Mathers, J. C., & Campbell, F. C. (2001). Curcumin modifies Apc(min) apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apc(min) mice. Carcinogenesis, 22(5), 821-825.
    Corredoira, J. C., Alonso, M. P., Garcia, J. F., Casariego, E., Coira, A., Rodriguez, A., et al. (2005). Clinical characteristics and significance of Streptococcus salivarius bacteremia and Streptococcus bovis bacteremia: a prospective 16-year study. [Research Support, Non-U.S. Gov't]. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 24(4), 250-255.
    Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P. R., et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1), 121-134.
    Cvitkovic, E. (1998). Ongoing and unsaid on oxaliplatin: the hope. British journal of cancer, 77 Suppl 4, 8-11.
    Das, A., Chak, A., & Cooper, G. S. (2006). Temporal trend in relative risk of second primary colorectal cancer. Am J Gastroenterol, 101(6), 1342-1347.
    Das, P., Skibber, J. M., Rodriguez-Bigas, M. A., Feig, B. W., Chang, G. J., Hoff, P. M., et al. (2006). Clinical and pathologic predictors of locoregional recurrence, distant metastasis, and overall survival in patients treated with chemoradiation and mesorectal excision for rectal cancer. Am J Clin Oncol, 29(3), 219-224.
    De Duve, C. (1963). The lysosome. Sci Am, 208, 64-72.
    De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annu Rev Physiol, 28, 435-492.
    Debatin, K. M. (2004). Apoptosis pathways in cancer and cancer therapy. [Review]. Cancer immunology, immunotherapy : CII, 53(3), 153-159.
    Degterev, A., Boyce, M., & Yuan, J. (2003). A decade of caspases. Oncogene, 22(53), 8543-8567.
    Delaunoit, T., Limburg, P. J., Goldberg, R. M., Lymp, J. F., & Loftus, E. V., Jr. (2006). Colorectal cancer prognosis among patients with inflammatory bowel disease. [Research Support, Non-U.S. Gov't]. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association, 4(3), 335-342.
    Demchenko, Y. N., Glebov, O. K., Zingone, A., Keats, J. J., Bergsagel, P. L., & Kuehl, W. M. (2010). Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood, 115(17), 3541-3552.
    Dempe, J. S., Pfeiffer, E., Grimm, A. S., & Metzler, M. (2008). Metabolism of curcumin and induction of mitotic catastrophe in human cancer cells. Mol Nutr Food Res, 52(9), 1074-1081.
    Deveraux, Q. L., & Reed, J. C. (1999). IAP family proteins--suppressors of apoptosis. Genes Dev, 13(3), 239-252.
    Dhillon, N., Aggarwal, B. B., Newman, R. A., Wolff, R. A., Kunnumakkara, A. B., Abbruzzese, J. L., et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14(14), 4491-4499.
    Du, C., Fang, M., Li, Y., Li, L., & Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Cell, 102(1), 33-42.
    du Plessis-Stoman, D., du Preez, J., & van de Venter, M. (2011). Combination treatment with oxaliplatin and mangiferin causes increased apoptosis and downregulation of NFkappaB in cancer cell lines. Afr J Tradit Complement Altern Med, 8(2), 177-184.
    Duarte, V. M., Han, E., Veena, M. S., Salvado, A., Suh, J. D., Liang, L. J., et al. (2010). Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKbeta protein of the NFkappaB pathway. Mol Cancer Ther, 9(10), 2665-2675.
    Dunn, W. A., Jr. (1990). Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol, 110(6), 1923-1933.
    Eastman, A. (2004). Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem, 91(2), 223-231.
    Epstein, J., Docena, G., MacDonald, T. T., & Sanderson, I. R. (2010). Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1beta and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease. Br J Nutr, 103(6), 824-832.
    Erdman, S. E., & Poutahidis, T. (2010a). Cancer inflammation and regulatory T cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. International journal of cancer. Journal international du cancer, 127(4), 768-779.
    Erdman, S. E., & Poutahidis, T. (2010b). Roles for inflammation and regulatory T cells in colon cancer. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. Toxicologic pathology, 38(1), 76-87.
    Fengsrud, M., Roos, N., Berg, T., Liou, W., Slot, J. W., & Seglen, P. O. (1995). Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res, 221(2), 504-519.
    Ferguson, A. M., White, L. S., Donovan, P. J., & Piwnica-Worms, H. (2005). Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol, 25(7), 2853-2860.
    Fowler, P. J., Grous, M., Price, W., & Matthews, W. D. (1984). Pharmacological differentiation of postsynaptic alpha adrenoceptors in the dog saphenous vein. J Pharmacol Exp Ther, 229(3), 712-718.
    Furuta, S., Hidaka, E., Ogata, A., Yokota, S., & Kamata, T. (2004). Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene, 23(22), 3898-3904.
    Furuya, N., Yu, J., Byfield, M., Pattingre, S., & Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1), 46-52.
    Garcia-Aguilar, J., Pollack, J., Lee, S. H., Hernandez de Anda, E., Mellgren, A., Wong, W. D., et al. (2002). Accuracy of endorectal ultrasonography in preoperative staging of rectal tumors. Dis Colon Rectum, 45(1), 10-15.
    Ghavami, S., Asoodeh, A., Klonisch, T., Halayko, A. J., Kadkhoda, K., Kroczak, T. J., et al. (2008). Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. [Research Support, Non-U.S. Gov't]. Journal of cellular and molecular medicine, 12(3), 1005-1022.
    Ghavami, S., Eshraghi, M., Kadkhoda, K., Mutawe, M. M., Maddika, S., Bay, G. H., et al. (2009). Role of BNIP3 in TNF-induced cell death--TNF upregulates BNIP3 expression. [Research Support, Non-U.S. Gov't]. Biochimica et biophysica acta, 1793(3), 546-560.
    Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., et al. (2009). Apoptosis and cancer: mutations within caspase genes. [Research Support, Non-U.S. Gov't Review]. Journal of medical genetics, 46(8), 497-510.
    Ghavami, S., Kerkhoff, C., Los, M., Hashemi, M., Sorg, C., & Karami-Tehrani, F. (2004). Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. [Research Support, Non-U.S. Gov't]. Journal of leukocyte biology, 76(1), 169-175.
    Ghobrial, I. M., Witzig, T. E., & Adjei, A. A. (2005). Targeting apoptosis pathways in cancer therapy. [Research Support, Non-U.S. Gov't Review]. CA: a cancer journal for clinicians, 55(3), 178-194.
    Ghosh, S., & Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell, 109 Suppl, S81-96.
    Giam, M., Huang, D. C., & Bouillet, P. (2008). BH3-only proteins and their roles in programmed cell death. Oncogene, 27 Suppl 1, S128-136.
    Giladi, N., Kazanov, D., Shpitz, B., Aroch, I., Kraus, S., & Arber, N. (2010). Curcumin potentiates the pro-apoptotic effects of sulindac sulfone in colorectal cancer. Expert Opin Investig Drugs, 19 Suppl 1, S117-124.
    Gingras, A. C., Raught, B., & Sonenberg, N. (2001). Regulation of translation initiation by FRAP/mTOR. Genes Dev, 15(7), 807-826.
    Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol, 75(4), 787-809.
    Gonzalez, V. M., Fuertes, M. A., Alonso, C., & Perez, J. M. (2001). Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol, 59(4), 657-663.
    Grady, W. M., & Carethers, J. M. (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review]. Gastroenterology, 135(4), 1079-1099.
    Green, D. R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell, 102(1), 1-4.
    Guillou, P. J., Quirke, P., Thorpe, H., Walker, J., Jayne, D. G., Smith, A. M., et al. (2005). Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet, 365(9472), 1718-1726.
    Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T., & Alnemri, E. S. (2002). Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. The Journal of biological chemistry, 277(16), 13430-13437.
    Gupta, S. (2003). Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). International journal of oncology, 22(1), 15-20.
    Haller, D. G., Tabernero, J., Maroun, J., de Braud, F., Price, T., Van Cutsem, E., et al. (2011). Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol, 29(11), 1465-1471.
    Hassan, C., Laghi, A., Zullo, A., Iafrate, F., & Morini, S. (2008). Q&A on diagnosis, screening and follow-up of colorectal neoplasia. Dig Liver Dis, 40(2), 85-96.
    Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, 132(3), 344-362.
    He, C., & Levine, B. (2010). The Beclin 1 interactome. Curr Opin Cell Biol, 22(2), 140-149.
    Higby, D. J., Wallace, H. J., Jr., Albert, D. J., & Holland, J. F. (1974). Diaminodichloroplatinum: a phase I study showing responses in testicular and other tumors. Cancer, 33(5), 1219-1215.
    Hockenbery, D. M. (2010). Targeting mitochondria for cancer therapy. Environ Mol Mutagen, 51(5), 476-489.
    Hoetelmans, R. W., Van de Velde, C. J., & Van Dierendonck, J. H. (2003). The presence of 19-kDa Bcl-2 in dividing cells. Cell Prolif, 36(6), 293-306.
    Houghton, J., Li, H., Fan, X., Liu, Y., Liu, J. H., Rao, V. P., et al. (2010). Mutations in bone marrow-derived stromal stem cells unmask latent malignancy. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Stem cells and development, 19(8), 1153-1166.
    Howells, L. M., Mitra, A., & Manson, M. M. (2007). Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int J Cancer, 121(1), 175-183.
    Huang, J., & Klionsky, D. J. (2007). Autophagy and human disease. Cell Cycle, 6(15), 1837-1849.
    Huang, X. F., Luo, S. K., Xu, J., Li, J., Xu, D. R., Wang, L. H., et al. (2008). Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood, 111(5), 2854-2865.
    Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., et al. (1997). Inhibition of death receptor signals by cellular FLIP. [Research Support, Non-U.S. Gov't]. Nature, 388(6638), 190-195.
    Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene, 23(16), 2746-2756.
    Jiang, M. C., Yang-Yen, H. F., Lin, J. K., & Yen, J. J. (1996). Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene, 13(3), 609-616.
    Johns, L. E., & Houlston, R. S. (2001). A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol, 96(10), 2992-3003.
    Johnson, S. M., Gulhati, P., Arrieta, I., Wang, X., Uchida, T., Gao, T., et al. (2009a). Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Anticancer research, 29(8), 3185-3190.
    Johnson, S. M., Gulhati, P., Arrieta, I., Wang, X., Uchida, T., Gao, T., et al. (2009b). Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res, 29(8), 3185-3190.
    Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410(6828), 549-554.
    Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., & Kim, D. H. (2010). mTOR regulation of autophagy. FEBS Lett, 584(7), 1287-1295.
    Jung, Y., & Lippard, S. J. (2007). Direct cellular responses to platinum-induced DNA damage. Chem Rev, 107(5), 1387-1407.
    Kaldis, P., Russo, A. A., Chou, H. S., Pavletich, N. P., & Solomon, M. J. (1998). Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell, 9(9), 2545-2560.
    Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 18(4), 571-580.
    Kapiteijn, E., Marijnen, C. A., Nagtegaal, I. D., Putter, H., Steup, W. H., Wiggers, T., et al. (2001). Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med, 345(9), 638-646.
    Karmakar, S., Banik, N. L., Patel, S. J., & Ray, S. K. (2006). Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett, 407(1), 53-58.
    Kataoka, T., Budd, R. C., Holler, N., Thome, M., Martinon, F., Irmler, M., et al. (2000). The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Current biology : CB, 10(11), 640-648.
    Keating, J., Pater, P., Lolohea, S., & Wickremesekera, K. (2003). The epidemiology of colorectal cancer: what can we learn from the New Zealand Cancer Registry? N Z Med J, 116(1174), U437.
    Kelley, R. K., Wang, G., & Venook, A. P. (2011). Biomarker use in colorectal cancer therapy. J Natl Compr Canc Netw, 9(11), 1293-1302.
    Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26(4), 239-257.
    Kim, J. S., Lee, J. H., Jeong, W. W., Choi, D. H., Cha, H. J., Kim do, H., et al. (2008). Reactive oxygen species-dependent EndoG release mediates cisplatin-induced caspase-independent apoptosis in human head and neck squamous carcinoma cells. International journal of cancer. Journal international du cancer, 122(3), 672-680.
    Kim, R. (2005). Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, 103(8), 1551-1560.
    Kim, R., Inoue, H., & Toge, T. (2004). Bax is an important determinant for radiation sensitivity in esophageal carcinoma cells. International journal of molecular medicine, 14(4), 697-706.
    Kim, R., Tanabe, K., Emi, M., Uchida, Y., Inoue, H., & Toge, T. (2003). Inducing cancer cell death by targeting transcription factors. [Review]. Anti-cancer drugs, 14(1), 3-11.
    Kim, R., Tanabe, K., Uchida, Y., Emi, M., Inoue, H., & Toge, T. (2002). Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. [Review]. Cancer chemotherapy and pharmacology, 50(5), 343-352.
    Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. [Research Support, Non-U.S. Gov't]. The EMBO journal, 14(22), 5579-5588.
    Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., et al. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. The Journal of biological chemistry, 276(49), 46639-46646.
    Klionsky, D. J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol, 8(11), 931-937.
    Kunnumakkara, A. B., Diagaradjane, P., Guha, S., Deorukhkar, A., Shentu, S., Aggarwal, B. B., et al. (2008). Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res, 14(7), 2128-2136.
    Kunnumakkara, A. B., Guha, S., Krishnan, S., Diagaradjane, P., Gelovani, J., & Aggarwal, B. B. (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res, 67(8), 3853-3861.
    Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., et al. (2008). Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ, 15(10), 1564-1571.
    Kwon, Y., & Magnuson, B. A. (2009). Age-related differential responses to curcumin-induced apoptosis during the initiation of colon cancer in rats. Food Chem Toxicol, 47(2), 377-385.
    Lacy, A. M., Garcia-Valdecasas, J. C., Delgado, S., Castells, A., Taura, P., Pique, J. M., et al. (2002). Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet, 359(9325), 2224-2229.
    Layek, R., Datta, A., Bittner, M., & Dougherty, E. R. (2011). Cancer therapy design based on pathway logic. Bioinformatics, 27(4), 548-555.
    Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 441(2), 523-540.
    Lee, T. L., Yeh, J., Friedman, J., Yan, B., Yang, X., Yeh, N. T., et al. (2008). A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. International journal of cancer. Journal international du cancer, 122(9), 1987-1998.
    Lee, Y., Kim, Y. J., Choi, Y. J., Lee, J. W., Lee, S., & Chung, H. W. (2012). Enhancement of cisplatin cytotoxicity by benzyl isothiocyanate in HL-60 cells. Food Chem Toxicol, 50(7), 2397-2406.
    Lepre, C. A., Strothkamp, K. G., & Lippard, S. J. (1987). Synthesis and 1H NMR spectroscopic characterization of trans-[Pt(NH3)2[d(ApGpGpCpCpT)-N7-A(1),N7-G(3)]]. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Biochemistry, 26(18), 5651-5657.
    Li, H., Zhu, H., Xu, C. J., & Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94(4), 491-501.
    Li, J., Vesey, D. A., Johnson, D. W., & Gobe, G. (2007). Erythropoietin reduces cisplatin-induced apoptosis in renal carcinoma cells via a PKC dependent pathway. Cancer Biol Ther, 6(12), 1944-1950.
    Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. [Research Support, N.I.H., Extramural Review]. Oncogene, 27(48), 6194-6206.
    Li, L. Y., Luo, X., & Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412(6842), 95-99.
    Li, N., Chen, X., Liao, J., Yang, G., Wang, S., Josephson, Y., et al. (2002). Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis, 23(8), 1307-1313.
    Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Cell, 91(4), 479-489.
    Li, W., Srinivasula, S. M., Chai, J., Li, P., Wu, J. W., Zhang, Z., et al. (2002). Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Nature structural biology, 9(6), 436-441.
    Liang, C., & Jung, J. U. (2010). Autophagy genes as tumor suppressors. Curr Opin Cell Biol, 22(2), 226-233.
    Lin, S. S., Huang, H. P., Yang, J. S., Wu, J. Y., Hsia, T. C., Lin, C. C., et al. (2008). DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett, 272(1), 77-90.
    Liu, B., Bai, Q. X., Chen, X. Q., Gao, G. X., & Gu, H. T. (2007). [Effect of curcumin on expression of survivin, Bcl-2 and Bax in human multiple myeloma cell line]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 15(4), 762-766.
    Liu, H. S., Ke, C. S., Cheng, H. C., Huang, C. Y., & Su, C. L. (2011). Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol Pharmacol, 80(4), 638-646.
    Lockshin, R. A., & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 36(12), 2405-2419.
    Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3), 457-468.
    Lorenzo, H. K., Susin, S. A., Penninger, J., & Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. [Research Support, Non-U.S. Gov't Review]. Cell death and differentiation, 6(6), 516-524.
    Ly, J. D., Grubb, D. R., & Lawen, A. (2003). The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. [Review]. Apoptosis : an international journal on programmed cell death, 8(2), 115-128.
    M'Koma, A. E., Moses, H. L., & Adunyah, S. E. (2011). Inflammatory bowel disease-associated colorectal cancer: proctocolectomy and mucosectomy do not necessarily eliminate pouch-related cancer incidences. [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. International journal of colorectal disease, 26(5), 533-552.
    Mabuchi, S., Ohmichi, M., Nishio, Y., Hayasaka, T., Kimura, A., Ohta, T., et al. (2004). Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. The Journal of biological chemistry, 279(22), 23477-23485.
    Mackenzie, G. G., Queisser, N., Wolfson, M. L., Fraga, C. G., Adamo, A. M., & Oteiza, P. I. (2008). Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin's lymphoma cells. Int J Cancer, 123(1), 56-65.
    Mahmoud, N. N., Carothers, A. M., Grunberger, D., Bilinski, R. T., Churchill, M. R., Martucci, C., et al. (2000). Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis, 21(5), 921-927.
    Malumbres, M., & Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends Biochem Sci, 30(11), 630-641.
    Mancini, M., Machamer, C. E., Roy, S., Nicholson, D. W., Thornberry, N. A., Casciola-Rosen, L. A., et al. (2000). Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol, 149(3), 603-612.
    Manikandan, R., Beulaja, M., Arulvasu, C., Sellamuthu, S., Dinesh, D., Prabhu, D., et al. (2012). Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines. Microsc Res Tech, 75(2), 112-116.
    Martinou, J. C., & Youle, R. J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Developmental cell, 21(1), 92-101.
    McWhinney, S. R., Goldberg, R. M., & McLeod, H. L. (2009). Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther, 8(1), 10-16.
    Meriggi, F., & Zaniboni, A. (2010). Gemox: a widely useful therapy against solid tumors-review and personal experience. J Chemother, 22(5), 298-303.
    Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. [Research Support, Non-U.S. Gov't]. The Journal of biological chemistry, 277(47), 45162-45171.
    Milhas, D., Cuvillier, O., Therville, N., Clave, P., Thomsen, M., Levade, T., et al. (2005). Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis. The Journal of biological chemistry, 280(20), 19836-19842.
    Miller, E. (2004). Apoptosis measurement by annexin v staining. Methods Mol Med, 88, 191-202.
    Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069-1075.
    Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 15(3), 1101-1111.
    Moertel, C. G., Fleming, T. R., Macdonald, J. S., Haller, D. G., Laurie, J. A., Goodman, P. J., et al. (1990). Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med, 322(6), 352-358.
    Moreau, K., Luo, S., & Rubinsztein, D. C. (2010). Cytoprotective roles for autophagy. Curr Opin Cell Biol, 22(2), 206-211.
    Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J. M., Criollo, A., Maiuri, M. C., et al. (2009). Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta, 1793(9), 1524-1532.
    Mukhopadhyay, A., Banerjee, S., Stafford, L. J., Xia, C., Liu, M., & Aggarwal, B. B. (2002). Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 21(57), 8852-8861.
    Nechushtan, A., Smith, C. L., Hsu, Y. T., & Youle, R. J. (1999). Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J, 18(9), 2330-2341.
    Neugut, A. I., Lautenbach, E., Abi-Rached, B., & Forde, K. A. (1996). Incidence of adenomas after curative resection for colorectal cancer. Am J Gastroenterol, 91(10), 2096-2098.
    Newcomb, P. A., Savu, A., Phipps, A. I., Coghill, A. E., & Yasui, Y. (2012). Impact of colon cancer screening on family history phenotype. Epidemiology, 23(2), 308-310.
    Newcomb, P. A., Taylor, J. O., & Trentham-Dietz, A. (1999). Interactions of familial and hormonal risk factors for large bowel cancer in women. Int J Epidemiol, 28(4), 603-608.
    Niv, Y., Goel, A., & Boland, C. R. (2005). JC virus and colorectal cancer: a possible trigger in the chromosomal instability pathways. [Review]. Current opinion in gastroenterology, 21(1), 85-89.
    O'Reilly, L. A., Ekert, P., Harvey, N., Marsden, V., Cullen, L., Vaux, D. L., et al. (2002). Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ, 9(8), 832-841.
    O'Reilly, L. A., Print, C., Hausmann, G., Moriishi, K., Cory, S., Huang, D. C., et al. (2001). Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ, 8(5), 486-494.
    Olas, B., Wachowicz, B., Majsterek, I., Blasiak, J., Stochmal, A., & Oleszek, W. (2006). Antioxidant properties of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene against modification of variety of biomolecules in human blood cells treated with platinum compounds. Nutrition, 22(11-12), 1202-1209.
    Olsson, M., & Zhivotovsky, B. (2011). Caspases and cancer. [Research Support, Non-U.S. Gov't Review]. Cell death and differentiation, 18(9), 1441-1449.
    Oyama, Y., Masuda, T., Nakata, M., Chikahisa, L., Yamazaki, Y., Miura, K., et al. (1998). Protective actions of 5'-n-alkylated curcumins on living cells suffering from oxidative stress. Eur J Pharmacol, 360(1), 65-71.
    Pal, S., Bhattacharyya, S., Choudhuri, T., Datta, G. K., Das, T., & Sa, G. (2005). Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detect Prev, 29(5), 470-478.
    Pal, S., Choudhuri, T., Chattopadhyay, S., Bhattacharya, A., Datta, G. K., Das, T., et al. (2001). Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells. Biochem Biophys Res Commun, 288(3), 658-665.
    Pan, M. H., Lai, C. S., Wu, J. C., & Ho, C. T. (2011a). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. [Review]. Molecular nutrition & food research, 55(1), 32-45.
    Pan, M. H., Lai, C. S., Wu, J. C., & Ho, C. T. (2011b). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res, 55(1), 32-45.
    Pan, M. H., Lin-Shiau, S. Y., & Lin, J. K. (2000). Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol, 60(11), 1665-1676.
    Patel, B. B., & Majumdar, A. P. (2009). Synergistic role of curcumin with current therapeutics in colorectal cancer: minireview. [Review]. Nutrition and cancer, 61(6), 842-846.
    Patel, B. B., Sengupta, R., Qazi, S., Vachhani, H., Yu, Y., Rishi, A. K., et al. (2008). Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. International journal of cancer. Journal international du cancer, 122(2), 267-273.
    Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-939.
    Paul, A. T., Gohil, V. M., & Bhutani, K. K. (2006). Modulating TNF-alpha signaling with natural products. Drug Discov Today, 11(15-16), 725-732.
    Perkins, N. D. (2000). The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci, 25(9), 434-440.
    Perkins, N. D. (2004). NF-kappaB: tumor promoter or suppressor? Trends Cell Biol, 14(2), 64-69.
    Peters, J. M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7(9), 644-656.
    Piwocka, K., Jaruga, E., Skierski, J., Gradzka, I., & Sikora, E. (2001). Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic Biol Med, 31(5), 670-678.
    Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. [Review]. Oncogene, 23(16), 2934-2949.
    Poplawska, B., Bielawska, A., Surazynski, A., Czarnomysy, R., & Bielawski, K. (2009). Novel dinuclear platinum(II) complexes targets NFkappaB signaling pathway to induce apoptosis and inhibit metabolism of MCF-7 breast cancer cells. Folia Histochem Cytobiol, 47(5), S141-146.
    Potter, J. D. (1999). Colorectal cancer: molecules and populations. Journal of the National Cancer Institute, 91(11), 916-932.
    Pritchard, D. M., Print, C., O'Reilly, L., Adams, J. M., Potten, C. S., & Hickman, J. A. (2000). Bcl-w is an important determinant of damage-induced apoptosis in epithelia of small and large intestine. Oncogene, 19(34), 3955-3959.
    Qin, H., Srinivasula, S. M., Wu, G., Fernandes-Alnemri, T., Alnemri, E. S., & Shi, Y. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Nature, 399(6736), 549-557.
    Qiu, S., Tan, S. S., Zhang, J. A., Liu, A., Yuan, J. Y., Rao, G. Z., et al. (2005). [Apoptosis induced by curcumin and its effect on c-myc and caspase-3 expressions in human melanoma A375 cell line]. Di Yi Jun Yi Da Xue Xue Bao, 25(12), 1517-1521.
    Quirke, P., Durdey, P., Dixon, M. F., & Williams, N. S. (1986). Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet, 2(8514), 996-999.
    Rao, C. V., Rivenson, A., Simi, B., & Reddy, B. S. (1995). Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res, 55(2), 259-266.
    Rashmi, R., Kumar, S., & Karunagaran, D. (2004). Ectopic expression of Bcl-XL or Ku70 protects human colon cancer cells (SW480) against curcumin-induced apoptosis while their down-regulation potentiates it. Carcinogenesis, 25(10), 1867-1877.
    Rashmi, R., Kumar, S., & Karunagaran, D. (2005). Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downregulation of Bcl-XL. Carcinogenesis, 26(4), 713-723.
    Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J, 11(3), 495-510.
    Read, S. H., Baliga, B. C., Ekert, P. G., Vaux, D. L., & Kumar, S. (2002). A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol, 159(5), 739-745.
    Robertson, J. D., Gogvadze, V., Kropotov, A., Vakifahmetoglu, H., Zhivotovsky, B., & Orrenius, S. (2004). Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep, 5(6), 643-648.
    Rodriguez, J., & Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Genes & development, 13(24), 3179-3184.
    Ruoff, K. L., Miller, S. I., Garner, C. V., Ferraro, M. J., & Calderwood, S. B. (1989). Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates. Journal of clinical microbiology, 27(2), 305-308.
    Ryan, K. M. (2011). p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer, 47(1), 44-50.
    Sa, G., & Das, T. (2008). Anti cancer effects of curcumin: cycle of life and death. Cell Div, 3, 14.
    Sagar, J., Sales, K., Taanman, J. W., Dijk, S., & Winslet, M. (2010a). Lowering the apoptotic threshold in colorectal cancer cells by targeting mitochondria. Cancer Cell Int, 10, 31.
    Sagar, J., Sales, K., Taanman, J. W., Dijk, S., & Winslet, M. (2010b). Lowering the apoptotic threshold in colorectal cancer cells by targeting mitochondria. Cancer cell international, 10, 31.
    Samuel, T., Weber, H. O., & Funk, J. O. (2002). Linking DNA damage to cell cycle checkpoints. Cell Cycle, 1(3), 162-168.
    Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. [Research Support, Non-U.S. Gov't]. The EMBO journal, 17(6), 1675-1687.
    Schaffzin, D. M., & Wong, W. D. (2004). Endorectal ultrasound in the preoperative evaluation of rectal cancer. Clin Colorectal Cancer, 4(2), 124-132.
    Schinzel, A., Kaufmann, T., & Borner, C. (2004). Bcl-2 family members: integrators of survival and death signals in physiology and pathology [corrected]. Biochim Biophys Acta, 1644(2-3), 95-105.
    Schmelzle, T., & Hall, M. N. (2000). TOR, a central controller of cell growth. Cell, 103(2), 253-262.
    Schmidt, C., Bielecki, C., Felber, J., & Stallmach, A. (2010). Surveillance strategies in inflammatory bowel disease. [Review]. Minerva gastroenterologica e dietologica, 56(2), 189-201.
    Schwartz, G. K. (2005). Development of cell cycle active drugs for the treatment of gastrointestinal cancers: a new approach to cancer therapy. J Clin Oncol, 23(20), 4499-4508.
    Schwartz, G. K., & Shah, M. A. (2005). Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol, 23(36), 9408-9421.
    Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253-266.
    Shankar, S., Chen, Q., Sarva, K., Siddiqui, I., & Srivastava, R. K. (2007). Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal, 2, 10.
    Sharma, H., Thatcher, N., Baer, J., Zaki, A., Smith, A., McAucliffe, C. A., et al. (1983). Blood clearance of radioactively labelled cis-diammine 1,1-cyclobutane dicarboxylate platinum (II) (CBDCA) in cancer patients. Cancer Chemother Pharmacol, 11(1), 5-7.
    Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: the story so far. Eur J Cancer, 41(13), 1955-1968.
    Shen, Y., Wang, J., Yang, T., Li, Y., Jiang, W., Guan, Z., et al. (2008). Platinums sensitize human epithelial tumor cells to lymphotoxin alpha by inhibiting NFkappaB-dependent transcription. Cancer Biol Ther, 7(9), 1407-1414.
    Shimizu, S., Ide, T., Yanagida, T., & Tsujimoto, Y. (2000). Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. The Journal of biological chemistry, 275(16), 12321-12325.
    Shimizu, S., Narita, M., & Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 399(6735), 483-487.
    Shitoh, K., Konishi, F., Miyakura, Y., Togashi, K., Okamoto, T., & Nagai, H. (2002). Microsatellite instability as a marker in predicting metachronous multiple colorectal carcinomas after surgery: a cohort-like study. Dis Colon Rectum, 45(3), 329-333.
    Singh, S., & Aggarwal, B. B. (1995). Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. The Journal of biological chemistry, 270(42), 24995-25000.
    Sohn, S. H., Ko, E., Chung, H. S., Lee, E. Y., Kim, S. H., Shin, M., et al. (2010). The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells. Br J Clin Pharmacol, 70(4), 547-556.
    Sreejayan, & Rao, M. N. (1994). Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol, 46(12), 1013-1016.
    Stark, G. R., & Taylor, W. R. (2006). Control of the G2/M transition. Mol Biotechnol, 32(3), 227-248.
    Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., et al. (1998). Pro-caspase-3 is a major physiologic target of caspase-8. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of biological chemistry, 273(42), 27084-27090.
    Strasser, A., Cory, S., & Adams, J. M. (2011). Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J, 30(18), 3667-3683.
    Su, C. C., Chen, G. W., Lin, J. G., Wu, L. T., & Chung, J. G. (2006a). Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res, 26(2A), 1281-1288.
    Su, C. C., Chen, G. W., Lin, J. G., Wu, L. T., & Chung, J. G. (2006b). Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. [Research Support, Non-U.S. Gov't]. Anticancer research, 26(2A), 1281-1288.
    Su, C. C., Lin, J. G., Li, T. M., Chung, J. G., Yang, J. S., Ip, S. W., et al. (2006). Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res, 26(6B), 4379-4389.
    Sugimoto, K., Hanai, H., Tozawa, K., Aoshi, T., Uchijima, M., Nagata, T., et al. (2002). Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology, 123(6), 1912-1922.
    Susin, S. A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., et al. (2000). Two distinct pathways leading to nuclear apoptosis. J Exp Med, 192(4), 571-580.
    Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718), 441-446.
    Tanabe, K., Kim, R., Inoue, H., Emi, M., Uchida, Y., & Toge, T. (2003). Antisense Bcl-2 and HER-2 oligonucleotide treatment of breast cancer cells enhances their sensitivity to anticancer drugs. International journal of oncology, 22(4), 875-881.
    Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol, 10(6), 676-687.
    Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. [Research Support, Non-U.S. Gov't Review]. Nature reviews. Molecular cell biology, 9(3), 231-241.
    Thornberry, N. A., & Lazebnik, Y. (1998). Caspases: enemies within. Science, 281(5381), 1312-1316.
    Todd, R. C., & Lippard, S. J. (2009). Inhibition of transcription by platinum antitumor compounds. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Metallomics : integrated biometal science, 1(4), 280-291.
    Tokudome, S., Nagaya, T., Okuyama, H., Tokudome, Y., Imaeda, N., Kitagawa, I., et al. (2000). Japanese versus Mediterranean Diets and Cancer. Asian Pac J Cancer Prev, 1(1), 61-66.
    Tolcher, A. W., Kuhn, J., Schwartz, G., Patnaik, A., Hammond, L. A., Thompson, I., et al. (2004). A Phase I pharmacokinetic and biological correlative study of oblimersen sodium (genasense, g3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. [Clinical Trial Clinical Trial, Phase I Research Support, U.S. Gov't, P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 10(15), 5048-5057.
    Tschopp, J., Irmler, M., & Thome, M. (1998). Inhibition of fas death signals by FLIPs. [Review]. Current opinion in immunology, 10(5), 552-558.
    Tsunemitsu, Y., Kagawa, S., Tokunaga, N., Otani, S., Umeoka, T., Roth, J. A., et al. (2004). Molecular therapy for peritoneal dissemination of xenotransplanted human MKN-45 gastric cancer cells with adenovirus mediated Bax gene transfer. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Gut, 53(4), 554-560.
    Ulukaya, E., Acilan, C., & Yilmaz, Y. (2011). Apoptosis: why and how does it occur in biology? Cell Biochem Funct, 29(6), 468-480.
    Van Erk, M. J., Teuling, E., Staal, Y. C., Huybers, S., Van Bladeren, P. J., Aarts, J. M., et al. (2004). Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells. J Carcinog, 3(1), 8.
    van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. [Research Support, Non-U.S. Gov't Review]. Cell death and differentiation, 9(10), 1031-1042.
    van Loo, G., Schotte, P., van Gurp, M., Demol, H., Hoorelbeke, B., Gevaert, K., et al. (2001). Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ, 8(12), 1136-1142.
    Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102(1), 43-53.
    Wang, D., & Lippard, S. J. (2005a). Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov, 4(4), 307-320.
    Wang, D., & Lippard, S. J. (2005b). Cellular processing of platinum anticancer drugs. [Research Support, U.S. Gov't, P.H.S. Review]. Nature reviews. Drug discovery, 4(4), 307-320.
    Wang, S. Y., Yu, Q. J., Zhang, R. D., & Liu, B. (2011). Core signaling pathways of survival/death in autophagy-related cancer networks. Int J Biochem Cell Biol, 43(9), 1263-1266.
    Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev, 15(22), 2922-2933.
    Wang, X., Tryndyak, V., Apostolov, E. O., Yin, X., Shah, S. V., Pogribny, I. P., et al. (2008). Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation. Cancer Lett, 270(1), 132-143.
    Watson, J. L., Greenshields, A., Hill, R., Hilchie, A., Lee, P. W., Giacomantonio, C. A., et al. (2010). Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog, 49(1), 13-24.
    Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., et al. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev, 14(16), 2060-2071.
    Wei, Y. S., Lu, J. C., Wang, L., Lan, P., Zhao, H. J., Pan, Z. Z., et al. (2009). Risk factors for sporadic colorectal cancer in southern Chinese. World J Gastroenterol, 15(20), 2526-2530.
    Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 30, 87.
    Wu, Q., Chen, Y., & Li, X. G. (2005). [Effect of curcumin on caspase 8- and caspase 9- induced apoptosis of lymphoma Raji cell]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 13(4), 624-627.
    Yan, N., & Shi, Y. (2005). Mechanisms of apoptosis through structural biology. [Comparative Study Review]. Annual review of cell and developmental biology, 21, 35-56.
    Yang, Y. I., Kim, J. H., Lee, K. T., & Choi, J. H. (2011). Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species. Gynecol Oncol, 123(3), 588-596.
    Ye, M. X., Li, Y., Yin, H., & Zhang, J. (2012). Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci, 13(3), 3959-3978.
    Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 9(1), 47-59.
    Yu, Z., & Shah, D. M. (2007). Curcumin down-regulates Ets-1 and Bcl-2 expression in human endometrial carcinoma HEC-1-A cells. Gynecol Oncol, 106(3), 541-548.
    Zhou, Y. Y., Wang, H. Y., Tang, Z. G., & Ma, D. L. (1984). [Two new formulae for evaluating effectiveness of drug combinations and revision of Burgi's and Jin's modified Burgi's formula]. Zhongguo Yao Li Xue Bao, 5(4), 217-221.
    Zhu, C., Raber, J., & Eriksson, L. A. (2005). Hydrolysis process of the second generation platinum-based anticancer drug cis-amminedichlorocyclohexylamineplatinum(II). J Phys Chem B, 109(24), 12195-12205.
    Zou, H., Henzel, W. J., Liu, X., Lutschg, A., & Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. [Comparative Study Research Support, Non-U.S. Gov't]. Cell, 90(3), 405-413.

    下載圖示
    QR CODE