研究生: |
陳建龍 Chen, Chien-Lung |
---|---|
論文名稱: |
新鮮枝葉掉落物對地表無脊椎動物群集的影響 The Effects of Greenfalls on Ground-dwelling Arthropod Community |
指導教授: |
李佩珍
Lee, Pei-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 自然擾動 、營養階層的交互作用 、颱風 、食物網 、資源波動 、資源與消費者之間的動態 |
英文關鍵詞: | natural disturbance, trophic interaction, typhoon, food web, resource fluctuation, resource—consumer dynamics |
DOI URL: | https://doi.org/10.6345/NTNU202203988 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
間歇性資源是指短暫、罕見並且高強度的可利用性資源在時間與空間的尺度下增加的事件。對地表的無脊椎動物來說,颱風所造成的新鮮枝葉掉落物就是一種間歇性資源的事件。在這個研究中,我在以臺灣二葉松為主的人工林中,人為製造了一個模擬颱風經過臺灣中部亞熱帶山區森林所產生新鮮枝葉掉落物的間歇性資源事件。我建立了二十個五公尺乘以五公尺的網格,隨機指定其中十個於2013年七月接受十公斤的新鮮二葉松枝葉做為處理組,另外十個則不進行處理,以做為控制組。我利用掉落式陷阱採集地表無脊椎動物樣本做為活動密度與生物量的指標,共採集八個月,其中處理前兩個月,處理後六個月。結果顯示,新鮮枝葉掉落物的處理並沒有對無脊椎動物群集的活動密度與生物量有整體上的影響,對於掠食者與碎屑食者的活動密度與生物量也無影響。然而我發現新鮮枝葉掉落物對於中間消費者有一個由營養階層下方往上傳遞的正向影響,而在中間消費者當中,經由新鮮枝葉掉落物而受益的類群,較可能為植食性動物。上述這個正向的影響同時表現在中間消費者的生物量分析以及其生物量占所有類群總合的比例分析上。這個研究發現了新鮮枝葉掉落物對於地表的消費者有營養階層由下往上的效應,但是這個效應並沒有傳到最上層的掠食者。此外,新鮮枝葉掉落物對於碎屑食性的消費者似乎沒有太大的影響,由於其生活史導致活動密度與生物量有強烈的季節性變動,也限制了新鮮枝葉掉落物對碎屑食性消費者的影響。
Resource pulses are rare, brief and intense episodes of increased resource availability in space and time. Greenfalls caused by typhoons is a resource pulse event for ground-dwelling arthropods. In this study, I artificially created a resource pulse of greenfalls in a Pinus taiwanensis plantation to simulate one that is caused by typhoons in a subtropic montane forest in central Taiwan. I set up 20 plots (5 m x 5 m) at the study site, of which 10 were randomly assigned to receive 10 kg of fresh P. taiwanensis greenfalls in the summer of 2013 whereas the other 10 plots were left untouched as controls. I monitored the activity-density and biomass of ground-dwelling arthropods using the pitfall traps for 8 months (2 months of pre-treatment time period and 6 months of post-treatment time period). The results suggest that the greenfalls did not have effects on arthropod active-density and biomass as a whole nor did it affect the predators and detritivores. However, I detected positive, bottom-up effects from the greenfalls to the intermediate consumers (most likely herbivores), both in terms of their actual and proportional biomass. This study demonstrated potential bottom-up effects of the greenfalls on the above-ground consumers, which did not propagate to the top predators. Furthermore, the greenfalls likely have limited influences on the detritivores. The strong seasonal fluctuations in arthropod activity-density and biomass at this subtropical montane forest may have limited the influences of the greenfalls.
Boose ER, Foster DR, Marcheterre F (1994) Hurricane impacts to tropical and temperate forest landscapes. Ecological Monographs 64: 369–400.
Carlton RG, Goldman CR (1984) Effects of a massive swarm of ants on ammonium concentrations in a subalpine lake. Hydrobiologia 111: 113–117.
Chan JCL, Liu KS (2004) Global warming and western north pacific typhoon activity from an observational perspective. Journal of Climate: 17: 4590–4602.
Curran LM, Leighton M (2000) Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecological Monographs 70: 101–128.
Haddad NM, Haarstad J, Tilman D (2000) The effects of long-term nitrogen loading on grassland insect communities. Oecologia 124: 73–84.
Haney JC (1999) Numerical response of birds to an eruption of elm spanworm (Ennomos subsignarius; Geometridae: Lepidoptera) in old-growth forest of the Appalachian Plateau, USA. Forest Ecology and Management 120: 203–217.
Hoekman D, Dreyer J, Jackson RD, Townsend PA, Gratton C (2011) Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 92: 2063–2072.
Jedrzejewska B, Jedrzejewski W (1998) Predation in vertebrate communities: the Bialowieza primeval forest as a case study. Ecological Studies 135:450. Springer– Verlag, Berlin – Heidelberg – New York.
Kelly D (1994) The evolutionary ecology of mast seeding. Trends in Ecology and Evolution 9: 465–471.
Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications 2: 203–217.
Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conservation Biology 7: 796–808.
Lieberman S, Dock CF (1982) Analysis of leaf litter arthropod fauna of a lowland tropical evergreen forest site (La Selva, Costa Rica). Revista de Biologia Tropical, 30: 27-34.
Lodge DJ, McDowell WH, McSwiney CP (1994) The importance of nutrient pulses in tropical forests. Trends in Ecology and Evolution 9: 384–387.
Lodge DJ, Scatena FN, Asbury CE, Sanchez MJ (1991) Fine litterfall and related nutrient inputs resulting from hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 23: 336–342.
McShea WJ (2000) The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81: 228–238.
Murphy SM, Wimp GM, Lewis D, Denno RF (2012) Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies. PLoS ONE 7: e43929.
Ostfeld RS, Jones CG, and Wolf JO (1996) Of mice and mast. BioScience 46: 323–330.
Peek MS, Forseth IN (2003) Enhancement of photosynthesis and growth of an aridland perennial in response to soil nitrogen pulses generated by mule deer. Environmental and Experimental Botany 49: 169-180.
Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79: 998–1007.
Schmidt KA, Ostfeld RS (2003) Songbird populations in fluctuating environments: predator responses to pulsed resources. Ecology 84: 406–415.
Schmidt KA, Ostfeld RS(2008)Numerical and behavioral effects within a pulse-driven system: consequences for shared prey. Ecology 89: 635–646.
Stapp P, Polis GA (2003) Influence of pulsed resources and marine subsidies on insular rodent populations. Oikos 102: 111–123.
Taiwan Central Weather Bureau. Typhoon DateBase: http://rdc28.cwb.gov.tw/TDB/ntdb, data accessed on June 24th, 2016.
Taiwan Forestry Bureau. http://www.forest.gov.tw/lp.asp?CtNode=1996&CtUnit=798&BaseDSD=7&mp=350, data accessed on June 24th, 2016.
Tulp I, Schekkerman H (2008) Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61: 48–60.
Wang HC, Wang SF, Lin KC, Shaner PL, Lin TC (2013) Litterfall and element fluxes in a natural hardwood forest and a Chinese-fir plantation experiencing frequent typhoon disturbance in central Taiwan. Biotropica 45: 541–548.
Whigham DF, Olmsted I, Cano EC, Harmon ME (1991) The impact of hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in the northeastern Yucatan Peninsula. Biotropica 23: 434–441.
Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM (2003) Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecology Letters 6: 996–1003.
Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306: 1565–1567.
Yang LH (2006) Interactions between a detrital resource pulse and a detritivore community. Oecologia 147: 522–532.
Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89: 621–634.
Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A Meta-analysis of resource pulse – consumer interactions. Ecological Monographs 80: 125–151.