簡易檢索 / 詳目顯示

研究生: 吳明儒
Wu, Ming-Ju
論文名稱: 使用氣相層析/哨音檢測技術對酵母菌固化微管陣列薄膜發酵過程中乙醇之即時監測
The Use of a Gas Chromatography/Milli-whistle Technique for the On-line Monitoring of Ethanol Production Using Microtube Array Membrane (MTAM) Immobilized Yeast Cells
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 微型發音哨氣相層析儀LabVIEW微管陣列薄膜發酵
英文關鍵詞: milli-whistle, gas chromatography, LabVIEW, MTAMs, fermentation
DOI URL: https://doi.org/10.6345/NTNU202204414
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生質酒精的發展上,篩選發酵效果良好的菌株,是其中一項重要的環節。透過發酵反應過程中葡萄糖含量、乙醇產量、細胞活性隨時間變化的曲線,能幫助我們了解菌株的表現。但為了得到這些數據,研究人員得固守在儀器與反應裝置旁,佔用機器與研究人員的時間。另外,由於將微生物細胞固定後,能提升其代謝活性,提高其代謝產物產量,並降低抑制物質對細胞的影響。
    本研究利用同軸靜電紡絲的技術,製作出包覆酵母菌的微管陣列薄膜,並以在本研究中自組裝的電磁閥進樣裝置與自組裝氣相層析/哨音檢測裝置,以五分鐘作為間隔,對於酵母菌發酵反應過程中產生的二氧化碳、乙醇進行自動化的即時線上偵測,並評估酵母菌在此薄膜應用於酒精發酵的表現。本次研究中,對包覆釀酒酵母的微管陣列薄膜一共進行11次發酵反應循環。二氧化碳訊號隨時間變化曲線的部分,由於電磁閥進樣器,一次只將反應槽少量氣體注入到分析儀器中,直到發酵反應結束為止,二氧化碳不斷累積,而當發酵反應結束後,二氧化碳不在產生,隨每次進樣的動作,反應槽內的二氧化碳逐漸減少,導致二氧化碳的變化曲線,呈現類似於高斯分佈,此曲線的頂點即是發酵反應結束地時間點,第一次至十一次發酵反應的時間分別為1.65、1.07、1.04、0.88、0.62、0.71、0.69、0.67、0.66、0.48、0.57天,此時間點的二氧化碳造成的頻率變化分別為26.54、31.70、31.13、37.35、43.50、45.94、46.72、45.18、50.80、60.88、59.25 Hz,經檢量線換算後,進樣的二氧化碳體積分別為64.20、77.03、75.62、91.07、106.36、112.42、114.36、110.53、124.50、149.55、145.50 μL。乙醇訊號隨時間變化曲線的部分,由於在定溫、定壓下,乙醇飽和蒸氣壓與溶液中乙醇濃度相關,因此可以乙醇的飽和蒸汽壓結果推估乙醇溶液的濃度,但在發酵反應結束時,乙醇無法在此時就達到飽和蒸氣壓,因此,在曲線達平衡的時間點相較於二氧化碳得到的結果有延遲的現象,此處取實驗中最後時間點收取的數據判斷乙醇的濃度。第一次到第十一次達平衡後乙醇造成的頻率變化分別為0.92、0.97、1.07、1.00、0.93、0.95、0.93、1.15、1.16、1.27、1.22 Hz,經檢量線換算後,乙醇溶液的重量百分比濃度分別5.15、5.59、6.92、6.33、5.75、5.96、5.77、6.18、6.25、6.96、6.64%,而理論產量為8.27%。由此數據能證實,透過氣相層析/哨音檢測技術能成功地對酵母菌微管陣列薄膜發酵過程進行有效的即時線上偵測,同時,也說明酵母菌微管陣列薄膜是一項在生質酒精發酵上具有潛力的技術。
    另一方面,本研究同時也進行可攜式氣相層析/哨音檢測裝置的開發。開發的裝置,長36 公分、寬29公分、高17公分,總重6公斤,以氮氣作為載流氣體下,對氫氣、氦氣、氧氣、氬氣、二氧化碳,都有良好的線性結果,線性範圍都有兩個數量級,也能在管柱烘箱溫度60℃下,分離並偵測混合樣品中,氧氣、丙酮、甲醇、乙醇的訊號,顯示在此成功地開發可攜式氣相層析/哨音檢測裝置。

    Hollow, poly (l-lactic acid) microtube array membranes (MTAM) were used in preparing membranes that contained immobilized yeast cells. To evaluate the performance of the developed system for continuous and fed-batch fermentation, a gas chromatography/milli-whistle device was used to on-line monitor the production of ethanol. The milli-whistle was connected to the outlet of a GC capillary, and when the fermentation gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The online data obtained for frequency vs. retention time can be recorded after a fast Fourier transform. In typical bioethanol fermentation, the yeast cells cannot be recycled, whereas the artificial yeast-MTAMs can be recycled. The hollow-MTAM containing immobilized yeast cells significantly enhanced bioethanol productivity and represents a novel, promising technology for bioethanol fermentation. On the other hand, a portable GC/whistle device was also developed for on-line fermentation monitoring. Herein, when nitrogen was used as carrier gas, a high linearity can be obtained from the range from 5 to 250 μL (injection volume), even various gases were used. Our data indicate that the GC/whistle device, which is economical and stable, is very useful detector for long term monitoring. Further applications can be to expected.

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1-1 研究目的 1 1-2 分析物-生質酒精 3 第二章 研究方法及原理 4 2-1 哨子感測器 4 2-1-1 哨子感測器的偵測原理 5 2-1-2 哨子感測器製作 7 2-2 靜電紡絲技術 8 2-2-1 靜電紡絲的原理 9 2-2-2 靜電紡絲的操作參數與影響 10 2-2-3 同軸靜電紡絲技術 11 2-3 發酵反應 12 2-3-1 影響酵母菌生長的因素 14 2-3-2 發酵反應的酵母菌種 17 2-3-3 酵母菌微管陣列薄膜的運作原理 18 第三章 儀器、藥品與實驗方法 19 3-1 實驗儀器 19 3-1-1 電紡儀 21 3-1-2 掃描式電子顯微鏡 24 3-1-3 哨子感測器 25 3-1-4氣相層析儀 26 3-1-5自組裝自動進樣器 27 3-2 裝置控制、資料紀錄與處理LabVIEW程序 29 3-3 可攜式氣相層析/哨子裝置 32 3-4 儀器設備與藥品列表 35 第四章 研究過程與結果討論 39 4-1 靜電紡絲 39 4-1-1發酵培養液、酵母菌微管陣列薄膜保存液配置 39 4-1-2酵母菌的計數與培養 40 4-1-3 紡絲液的成分與配置 43 4-1-4 靜電紡絲條件與操作 46 4-1-5 酵母菌微管陣列薄膜的結構 49 4-2 微管陣列薄膜發酵實驗 54 4-2-1 酵母菌微管陣列薄膜發酵的條件 54 4-2-2 S. cerevisiae微管陣列薄膜乙醇、二氧化碳檢量線 55 4-2-3 S. cerevisiae微管陣列薄膜發酵過程與表現 57 4-2-4 K. marxianus微管陣列薄膜的情況 76 4-3 自組裝可攜式氣相層析儀/哨子裝置的線性表現 79 4-4 自組裝可攜式氣相層析儀/哨子裝置烘箱溫度的影響 82 第五章 結論 85 參考資料 87

    [1] Mustafa, B.; Havva, B.; Cahide O., Prog. Energy Combust. Sci. 2008, 34, 551-573.
    [2] Jan, B.; Kang, Q.; Lise, A.; Raf, D.; Lv, Y. -Q.; Tan, T. -W., Prog. Energy Combust. Sci. 2015, 47, 60-88.
    [3] Marina, O. S. D.; Adriano, V. E.; Silvia, A. N.; Rubens, M. F.; Carlos, E. V. R.; Maria, R. W. M., Chem. Eng. Res. Des. 2009, 87, 1206-1216.
    [4] Cassidy, M.B.; Lee, H.; Trevors, J. T., J. Ind. Microbiol. 1996, 16, 79-101.
    [5] Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H., Biomass Bioenergy 2012, 47, 395-401.
    [6] Neelakantam, V. N.; Ronan, P., Appl. Environ. Microbiol. 2005, 71, 2239-2243.
    [7] Goyal, G.; Tsai, S. -L.; Madan, B.; DaSilva, N. A.; Chen, W., Microb. Cell Fact. 2011, 10:89.
    [8] Lin, C. -H.; Lin, C. -H.; Li, Y. -S.; He, Y. -S., Anal. Chem. 2010, 82, 7467-7471.
    [9] He, Y. -S.; Chen, K. -F.; Lin, C. -H.; Lin, M. -T.; Chen, C. -C.; Lin, C. -H., Anal. Chem. 2013, 85, 3303-3308.
    [10] Lin, C. -H.; He, Y. -S.; Lin, C. -H.; Fan, G. -T.; Chen, H. -K., Anal. Sci. 2014, 30, 183-191.
    [11] Bai, F.W.; Anderson, W. A.; Moo-Young, M., Biotechnol. Adv. 2008, 26, 89-105.
    [12] Mishra, J. S.; Thakur, N. S.; Kewalanand; Sujathamma, P.; Kushwaha B. B.; Rao, S. S.; Patil, J. V., Sugar Tech. 2015, 17, 204-209.
    [13] Zhong, Y.; Ruan, Z. -H.; Zhong, Y. -K.; Archer, S.; Liu, Y.; Liao, W., Bioresour. Technol. 2015, 179, 173-179.
    [14] Jeehoon, H.; Jeremy, S. L.; David, M. A.; James, A. D.; Christos, T. M., Bioresour. Technol. 2015, 182, 258-266.
    [15] Manivannan, A.; Narendhirakannan, R. T., Waste Biomass Valor. 2015, 6, 209-216.
    [16] Bai, F.W.; Anderson, W. A.; Moo-Young, M., Biotechnol. Adv. 2008, 26, 89-105.
    [17] Alvydas, P.; Saugirdas, P.; Juozas, G., J. KONES Internal Combustion Engines, 2003, 10, 3-4.
    [18] Coltman, J. W., J. Acoust. Soc. Am. 1976, 3, 725-733.
    [19] Nandana, B.; Subhas, C. K., Biotechnol Adv. 2010, 28, 325-347.
    [20] Christopher, A. B.; Melissa, D. K.; Carl, D. S.; Jeong, S. -I.; Kimberly, L. S.; Eben, A.; Saad, A. K., Carbohydr. Polym. 2011, 85, 111-119.
    [21] Gao, A. -L.; Liu, F.; Xue, L. -I., J. Membr. Sci. 2014, 452, 390-399.
    [22] D’Alessandro, D.; Battolla, B.; Trombi, L.; Barachini, S.; Cascone, M. G.; Bernardini, N.; Petrini, M.; Mattii, L., Micron 2009, 40, 605-611.
    [23] Huang, Z. -M.; Zhang, Y. -Z.; Kotaki, M.; Ramakrishna, S., Compos. Sci. Technol. 2003, 63, 2223-2253.
    [24] Bilal, A.; Simeon, S.; Eddie, P.; Eleanor, S.; Mohan, E., Food Res. Int. 2013, 54, 1761-1772.
    [25] Drexler, J. W.; Powell, H. M., Acta Biomater. 2011, 7, 1133-1139.
    [26] Zhang, Q. -H.; Li, Y. -Y.; Ren, Z. -H.; Ahmad, Z. -H.; Li, X.; Han, G. -R., Mater. Lett. 2015, 152, 82-85.
    [27] Malherbe, I.; Sanderson, R. D.; Smit, E., Polymer 2010, 51, 5037-5043.
    [28] Zhang, M. -X.; Chen, J. -F.; Chen, B. -J.; Cao, J. -J.; Hong, M.; Zhou, C. -X.; Xu, Q., Appl. Surf. Sci. 2016, 367, 126-133.
    [29] Han, D.; Filocamo, S.; Kirby, R.; Steckl, A. J., ACS Appl. Mater. Interfaces 2011, 3, 4633-4639.
    [30] Bedford, N. M.; Steckl, A. J., ACS Appl. Mater. Interfaces 2010, 2, 2448-2455.
    [31] Baldino, L.; Naddeo, F.; Cardea, S.; Naddeo, A.; Reverchon, E., J. Mech. Behav. Biomed. Mater. 2015, 51, 225-236.
    [32] Stefan, H.; Timea, B.; Robert, K.; Torsten, F.; Jurgen, P., Anal. Chem. 2015, 87, 982-988.
    [33] Keith, M. F.; Alexander, F.; Gregory, C. R. Chem. Eng. Technol. 2013, 104, 250-259.
    [34] Pakravan, M.; Heuzey, M. -C.; Ajji, A., Biomacromolecules 2012, 13, 412-421.
    [35] Kurban, Z.; Lovell, A.; Bennington, S. M.; Jenkins, D. W. K.; Ryan, K. R.; Jones, M. O.; Skipper, N. T.; David, W. I. F., J. Phys. Chem. C 2010, 114, 21201-21213.
    [36] Yu, D. -G.; White, K.; Yang, J. -H.; Wang, X.; Qian, W.; Li, Y., Mater. Lett. 2012, 67, 78-80.
    [37] Jiang, G. -J.; Qin, X. -H., Mater. Lett. 2014, 128, 259-262.
    [38] Van Do, C.; Nguyen, T. T. T.; Park, J. -S., Sol. Energy Mater. Sol. Cells 2012, 104, 131-139.
    [39] Hung, W. -C.; Lin, L. -H.; Tsen, W. -C.; Shie, H. -S.; Chiu, H. -L.; Yang, T. C. K.; Chen, C. -C., Eur. Polym. J. 2015, 67, 166-173.
    [40] Jamal, S. M. Z.; Burcu, S. O.; Ilse, L. -P.; Mehmet, Y.; Yusuf, Z. M., Eur. Polym. J. 2015, 62, 66-76.
    [41] Tuin, S. A.; Pourdeyhimi, B.; Loboa, E. G., J. Biomed. Mater. Res. A 2014, 102, 3311-3323.
    [42] Shih, Y. -H.; Yang, J. -C.; Li, S. -H.; Yang, W. -C. V.; Chen, C. -C., Text. Res. J. 2012, 82, 602-612.
    [43] Ou, K. -L.; Chen, C. -S.; Lin, L. -H.; Lu, J. -C.; Shu, Y. -C.; Tseng, W. -C.; Yang, J. -C.; Lee, S. -Y.; Chen, C. -C., Eur. Polym. J. 2011, 47, 882-892.
    [44] Huang, Y. -S.; Kuo, C. -C.; Shu, Y. -C.; Jang, S. -C.; Tsen, W. -C.; Chuang, F. -S.; Chen, C. -C., Macromol. Chem. Phys. 2014, 215, 879-887.
    [45] Yang, J. -C.; Yang, S. -Y.; Tseng, W. -C.; Shu, Y. -C.; Lu, J. -C.; Shie, H. -S.; Chen, C. -C., Macromol. Mater. Eng. 2012, 297, 115-122.
    [46] Chen, C. -C.; Wu, C. -H.; Wu, J. -J.; Chiu, C. -C.; Wong, C. -H.; Tsai, M. -L.; Lin, H. -T. V., Process Biochem. 2015, 50, 1509-1515.
    [47] Patra, S. N.; Easteal, A. J.; Bhattacharyya, D., J. Mater. Sci. 2009, 44, 647-654.
    [48] Erasmus, D. J.; Cliff, M.; Van Vuuren, H. J. J., Am. J. Enol. Vitic. 2004, 55:4.
    [49] Marek, S., Pol. J. Agron. 2009, 1, 37-42.
    [50] Liu, Z. -L.; Slinnger, P. J.; Gorsich, S. W., Appl. Biochem. Biotechol. 2005, 5, 451-460.
    [51] Daniel, J. F.; Malcolm, S.; Arjan N., Int. J. Food. Microbiol. 2003, 86, 113-122.
    [52] Roberto, L.; German A.; Fernando, A.; Jose, A. T.; Solange, I. M., Appl. Energ. 2013, 102, 124-130.
    [53] Gabriele, D.; Jochen, S.; Richard P.; Saskia, E.; Saskia, K. K.; Patrice, C.; Dieter, H. W.; Hans, K. R., MBC 1998, 9, 1149-1162.
    [54] Hartmann, H. -J.; Weser , U., BioMetals 2000, 13, 153-156.
    [55] Saltukoglu, A.; Slaughter, J. C., J. Inst. Brew. 1983, 89, 81-83.
    [56] Vesna, S. -T.; Vlatka, G. Z.; Damir, S.; Slobodan, G.; Nada, V., Food Technol. Biotechnol. 2004, 42, 115-120.
    [57] Singer, M. A.; Lindquist, S., Mol. Cell 1998, 1, 639-648.
    [58] Pachaya, C.; Lakkana L.; Prasit, J.; Pattana, L., Energies 2013, 6, 884-899.
    [59] Adeboye, P. T.; Olsson, L.; Bettiga, M., Bioresour. Technol. 2016, 212, 11-19.
    [60] Marta, S. -R.; Amaury, T. -R.; Rita, C. -R.; Antonio, L. -G.; Fulgencio, M. -I., LWT-Food Sci. Technol. 2016, 73, 140-146.
    [61] Isabel, E.; Joachim, F. E., Fungal. Genet. Biol. 2016, 92, 14-25.
    [62] Juan, F. D.; Paula, S.; Mercedes, A. P.; Andrés, G. S.; de la Orlando, O.; Jorge, R. W., Innov. Food Sci. Emerg. Technol. 2016, 36, 83-91.
    [63] Paniagua-Martínez, I.; Mulet, A.; García-Alvarado, M. A.; Benedito, J., J. Food Eng. 2016, 181, 42-49.
    [64] Quarterman, J.; Skerker, J. M.; Feng, X. -Y.; Liu, I. -Y.; Zhao, H. -M.; Adam, P. A.; Jin, Y. -S., J. Biotechnol. 2016, 229, 13-21.
    [65] Trigueros, D. E. G.; Fiorese, M. L.; Kroumov, A. D.; Hinterholz, C. L.; Nadai, B. L.; Assuncão, G. M., Chem. Eng. J. Biochem. Eng. J. 2016, 110, 71-83.
    [66] Li, Y. -C.; Li, G. -Y.; Gou, M.; Xia, Z. -Y.; Tang, Y. -Q.; Kida, K., J. Biosci. Bioeng. 2016, 121, 685-691.
    [67] Sun, X. -G.; Liu, L. -L.; Zhao, Y.; Ma, T. -T.; Zhao, F.; Huang, W. -D.; Zhan, J. -C., Food Chem. 2016, 192, 43-52.
    [68] Abdul, S. Q.; Zhang, J.; Bao, J., Bioresour. Technol. 2015, 189, 399-404.
    [69] Anna, K.; Giannis, P.; Christos, C.; Costas, K., Biomass Bioenerg. 2016, 90, 32-41.
    [70] Fan, S. -Q.; Xiao, Z. -Y.; Tang, X. -Y.; Chen, C. -Y.; Zhang, Y.; Deng, Q.; Yao, P.; Li, W. -J., Bioresour. Technol. 2014, 162, 8-13.
    [71] Li, X.; Park, A. -S.; Estrela, R.; Kim, S. -R.; Jin, Y. -S.; Jamie, H. D. C., Biotechnol. Rep. 2016, 9, 53-56.
    [72] Mohammad, N. R.; Emmie, D.; Pieter, J.; Anali, P.; Kevin, J. V.; Christophe, M. C., Food Microbiol. 2014, 39, 108-115.
    [73] Gu, H. -Q.; Zhang, J.; Bao, J., Bioresour. Technol. 2014, 157, 6-13.
    [74] Chizuru, Y.; Osamu, K.; Tomoko, K., Microbiol Res. 2014, 169, 907-914.
    [75] Bae, Y. -H.; Kweon, D. -H.; Park, Y. -C.; Seo, J. -H., Process Biochem. 2014, 49, 547-553.
    [76] Bae, Y. -H.; Kang, K. -H.; Jin, Y. -S.; Seo, J. -H., J. Biotechnol. 2014, 169, 34-41.
    [77] Wang, P. -M.; Zheng, D. -Q.; Chi, X. -Q.; Li, Q.; Qian, C. -D.; Liu, T. -Z.; Zhang, X. -Y.; Du, F. -G.; Sun, P. -Y.; Qu, A. -M.; Wu, X. -C., Bioresour. Technol. 2014, 152, 371-376.
    [78] Frohman, C. A.; de Orduña, R. M., Food Res. Int. 2013, 53, 551-555.
    [79] Wu, W. -H.; Hung, W. -C.; Lo, K. -Y.; Chen, Y. -H.; Wan, H. -P.; Cheng, K. -C., Bioresour. Technol. 2016, 201, 27-32.
    [80] Flores, J. -A.; Anne, G., Lorena, A. -D.; Enrique, J. H. -L.; Melchor, A.; Javier, A., Bioresour. Technol. 2013, 146, 267-273.
    [81] Antonio D. M.; David, I.; Ignacio, B.; Alberto, G.; Ballesteros, M., Bioresour. Technol. 2013, 135, 239-245.
    [82] Arnoldo, L. -A.; Alma, L. D. -P.; Carlos, S. -A.; Lourdes, M. -R.; Jesús, C. -G., J. Biosci. Bioeng. 2012, 113, 614-618.
    [83] Matsuzaki, C.; Nakagawa, A.; Koyanagi, T.; Tanaka, K.; Minami, H.; Tamaki, H.; Katayama, T.; Yamamoto, K.; Kumagai, H., J. Biosci. Bioeng. 2012, 113, 604-607.
    [84] Naveen, K. P.; Hasan, K. A.; Mark, R. W.; Danielle, D. B.; Ibrahim, M. B., Bioresour. Technol. 2011, 102, 10618-10624.
    [85] Oda, Y.; Nakamura, K.; Shinomiya, N.; Ohba, K., Biomass Bioenerg. 2010, 34, 1263-1266.
    [86] Tomas-Pejo, E.; Oliva, J. M.; Gonzalez, A.; Ballesteros, I.; Ballesteros, M., Fuel 2009, 88, 2142-2147.
    [87] Stefano, R.; Elena, Z.; Alberto, A.; Claudio, P.; Daniela, U.; Maddalena, R., Microb. Cell Fact. 2013, 12:34.
    [88] Rouwenhorst, R. J.; Visser, L. E.; Van Der Baan, A. A.; Scheffers, W. A.; Van Dijken, J. P., Appl. Environ. Microbiol. 1988, 54, 1131-1137.
    [89] Gao, A. -L.; Liu, F.; Shi, H. -Y.; Xue, L. -I., J. Memb. Sci. 2015, 478, 96-104.

    無法下載圖示 本全文未授權公開
    QR CODE