研究生: |
施翔仁 Shih, Shiang-Ren |
---|---|
論文名稱: |
A quadruple set-valued equidistribution over permutations A quadruple set-valued equidistribution over permutations |
指導教授: |
游森棚
Eu, Sen-Peng |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | Permutations 、sorting index 、Cycle 、Lmap 、Lmal 、inversion 、Rmil 、Rmip |
英文關鍵詞: | Permutations, sorting index, Cycle, Lmap, Lmal, inversion, Rmil, Rmip |
DOI URL: | http://doi.org/10.6345/NTNU201900961 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this paper we give a detailed constructive proof of an equidistribution between two quadruples of set-valued statistics (sort,Cyc,Lmap,Lmal) ∼ (inv,Lmap,Rmil,Rmip ) over the set of permutations, where sort,Cyc,Lmap,Lmal stand for the statistics sorting index, cycle set, left to right maximal place set, left to right maximal letter set and inv,Lmap,Rmil,Rmip stand for the statistics inversion, left to right maximal place set, right to left minimum letter set, right to left minimum place set respectively. Our main result will be proved by way of a bijection F : Sn → Sn , which is a composition of four mappings.
[1] C.A. Athanasiadis, Edgewise subdivisions, local h-polynomials and excedences in the wreath product Z r o S n , SIAM J. Discrete Math., 28 (2014), 1479-1492.
[2] J.-L. Baril, Statistics-preserving bijections between classical and cyclic permutations. Inform. Process. Lett., 113 (2013), 17-22.
[3] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
[4] W.Y.C Chen, G.Z. Gong, J.J.F. Guo, The sorting index and permutation codes, Advances in Applied Mathmatics 50 (2013) 367-389.
[5] S.-P. Eu, T.-S. Fu, H.-C Hsu, H.-C. Liao, Signed countings of types B and D permutations and t,q-Euler numbers, Adv. in Appl. Math., 97
(2018), 1-26.
[6] S.-P. Eu, T.-S. Fu, Y.-J. Pan, A refined sign-balanced of simsun permutations European J. Combin., 36 (2014), 97-109.
[7] S.-P. Eu, T.-S. Fu, Y.-J. Pan, C.-T Ting, Sign-balance identities of AdinRoichman type on 321-avoiding alternating permutations, Discrete Math., 312 (2012), 2228-2237.
[8] S.-P. Eu, Y.-H. Lo, T.-L. Wong, The sorting index on colored permutations and even-signed permutations, Advances in Applied Mathmatics 68 (2015) 18-50.
[9] L. Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, in Academiae Imperialis Scientiarum Petropolitanae, St. Petersburg 1755 (Part II, chapter 7: Methodus sum-
mandi superior ulterius promota.)
[10] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236-240.
[11] D. Foata, Sur un énoncé de MacMahon, C. R. Acad. Sci. Paris 258 (1964), 1672-1675.
[12] D. Foata, Distributions eulériennes et mahonienns sur le groupe des permutations, in Higher Combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), Reidel, Dordrecht-Boston, MA, 1977, pp. 27-49.
[13] D. Foata, G.-N. Han, New permutation coding and equidistribution of set-valued ststistics, Theoret. Comput. Sci. 410 (2009) 3743-3750.
[14] D. foata and M.-P. Schützenberger, Théorie géométrique des polynômes Eulériens, Lecture Notes in Math., no. 138, Springer, Berlin, 1970.
[15] D. foata and M.-P. Schützenberger, Nombres d’Euler et permutations alternantes, in A survey of Combinatorial Theory, J. N. Srivistava, et al., eds., North-Holland, Amsterdam, 1973, pp. 173-187.
[16] D. foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Machr. 83 (1978), 143-159.
[17] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[18] D.H. Lehmer, Teaching combinatorial tricks to a computer, in:Proc. Sympos. Appl. Math., vol.10, Amer. Math. Soc., Providence, RI, 1960, pp. 179-193.
[19] P.A. MacMahon, Combinatory Analysis, vols.1 and 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960, and by Dover, New York, 2004.
[20] T. K. Petersen, The sorting index, Adv. in Appl. Math., 47 (2011), 615-630.
[21] J. Shareshian and M. L. Wachs, q-Eulerian polynomials: excedance number and major index, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 33-45.
[22] R. P. Stanley, Enumerative Combinatorics. Vol. 1, vol. 49 of Cambridge Studies in Adcanced Mathematics. Cambridge University Press, Cambridge, 1997.