簡易檢索 / 詳目顯示

研究生: 侯彥竹
Hou, Yen-Chu
論文名稱: 比較固定與動態轉動慣量阻力訓練器材在肱二頭肌上的表現
Compared fixed and dynamic inertia resistance training equipment on the performance of the biceps
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 46
中文關鍵詞: 離心收縮訓練衝量向心收縮訓練
英文關鍵詞: eccentric contraction training, impulse, concentric contraction training
論文種類: 學術論文
相關次數: 點閱:207下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

執行慣性式阻力訓練時的向心收縮所產生的力量與收縮速度成反向關係,肌肉在向心收縮末期 (60-70%) 發生減速期,使動作無法維持高速率。因此,為了使用更快的速度執行,勢必要用較輕的負荷才能使輪盤產生高速,而所產生的離心收縮負荷較小;反之亦然。目的:本研究希望藉由使用自製的動態轉動慣量阻力訓練器材,使向心收縮期間產生較快的速度且在離心收縮期間能累積更多角動量,造成更多的離心收縮負荷,並能符合肌肉速度力量曲線,讓高速度的動作與高慣量互相搭配而產生更好的離心收縮強度。方法: 本研究招募12位健康男性,使用自製的轉動慣量阻力訓練器材進行3種不同慣量(固定輕轉動慣量、動態轉動慣量、固定重轉動慣量)各5次的向心-離心收縮,共兩組,組間休息2分鐘,並收取肱二頭肌產生衝量與肱二頭肌肌肉活化情形效果進行分析比較。結果:向心初期固定重轉動慣量之衝量與iEMG顯著高於固定輕轉動慣量與動態轉動慣量;向心末期時動態轉動慣量與重轉動慣量之衝量與iEMG顯著高於輕轉動慣量;離心初期時動態轉動慣量之衝量顯著高於固定重轉動慣量;離心末期時動態轉動慣量與固定重轉動慣量之衝量與iEMG顯著高於輕轉動慣量。討論:動態轉動慣量在向心收縮期速度快且在向心末期轉動慣量變大,因此比起其他兩者慣量在轉折時累積較多角動量。結論:動態轉動慣量擁有固定輕轉動慣量的速度快、固定重轉動慣量的角動量大等優點。向心收縮期:轉動慣量小、施於機台速度快。離心收縮期:轉動慣量大、角動量增加,因為離心收縮具有機械性增強的效益,因此對離心收縮的肌肉訓練有所助益。

Purpose: A self-designed dynamic inertia resistance training equipment was used to generate a faster velocity during concentric phase and accumulate more angular momentum during eccentric contraction. This study was designed to compare the effect of different inertial resistance equipment. Method: Twelve healthy men were recruited as subjects, using three different inertial resistances (fixed light moment of inertia, dynamic moment of inertia and fixed heavy moment of inertia) to execute 5 times con-ecc action of two sets, two minutes rest between sets. The biceps muscle impulse and EMG were analyzed. Result: In initial concentric phase, the impulse of heavy MOI and iEMG were significantly higher than light MOI and dynamic MOI; In the end of concentric phase, dynamic MOI and heavy MOI impulse and iEMG were significantly higher than light MOI; In initial eccentric phase, dynamic MOI impulse was significantly higher than heavy MOI; In the end of eccentric phase, dynamic MOI and heavy MOI impulse and iEMG were significantly higher than the light MOI. Discussion: Dynamic MOI had higher velocity and MOI becomes larger at the end of concentric phase, so accumulated more angular momentum than other two momentums. Conclusion: Dynamic inertia resistance has the advantages of both fixed light MOI's fast velocity and fixed heavy MOI's large angular momentum, therefore, the effect of eccentric overload could be increased to enhanced strength training.

口試委員與系主任簽字之論文通過簽名…………………………………………….i 論文授權書……………………………………………..…….. ……………………...ii 中文摘要……………………………………………..…….. ………………………..iii 英文摘要……………………………………………..……………………………….iv 謝誌……………………………………………..……………………………………..v 目次……………………………………………..…………………………………….vi 表次……………………………………………..…………………………………...viii 圖次……………………………………………..………………………………….viiii 第壹章 、 緒 論 第一節、 研究背景……………………………………………..……..……1 第二節、 研究問題…………………………………………….……...……4 第三節、 研究目的…………………………………………………....……4 第四節、 研究假設…………………………………………………....……4 第五節、 研究範圍與限制………………………………………….…...…5 第六節、 名詞操作型定義…………………………………………...…….5 第貳章 、 文獻探討 第一節、 為什麼要使用慣性式阻力訓練裝置?………………………..11 第二節、 慣性式肌力訓練的機轉…………………………………..……15 第三節、 慣性式阻力訓練產生離心收縮效果的因素………………..…16 第四節、 文獻總結……………………………………………………..…18 第參章 、 研究方法 第一節、 研究對象……………………………………………………..…19 第二節、 實驗日期與地點……………………………………………..…19 第三節、 測量儀器與設備……………………………………………..…19 第四節、 轉動慣量選擇………………………………………………..…23 第五節、 實驗步驟……………………………………………………..…23 第六節、 實驗流程……………………………………………………..…25 第七節、 資料蒐集與分析…………………………………………..……26 第肆章 、 結果 第一節、 受試者基本資料…………………………………………..……29 第二節、 不同慣量間角速度…………………………………..…………29 第三節、 不同轉動慣量間向心收縮初期……………………..…………31 第四節、 不同轉動慣量間向心收縮末期…………………………..……33 第五節、 不同轉動慣量間離心收縮初期…………………………..……35 第六節、 不同轉動慣量間離心收縮末期……………………………..…37 第伍章 、 討論 第一節、 不同轉動慣量在向心收縮期的效果………………………..…39 第二節、 不同轉動慣量在離心收縮期的效果………………….………40 第三節、 動態轉動慣量效果…………………………………….………41 第四節、 結論與未來建議……………………………………….………42 第陸章 、 結論與建議..…………………………………………………………...42 引用文獻………………………………………………………...……………...……43 個人小傳………………………………………………………...………………...…47

李書維、黃長福(1995)。 不同高度赤腳著地動作之生物力學分析。體育學報, (20), 213-224.

陳玫伶、相子元(2013)。慣性式肌力訓練對排球動作表現之影響。未出版碩士論文,國立台灣師範大學,台北市。

劉宇、江界山、陳重佑(1996)。肌力與肌力診斷的生物力學基礎。台灣師大體育研究,(2),151-179

戴一涵、相子元(2013)。六週不同轉動慣量之慣性式阻力訓練。未出版碩士論文,國立台灣師範大學,台北市。

Albert, M. (1991). Eccentric muscle training in sports and orthopaedics. New York, NY: Churchill Livingston, 75-97.

Albert, M. S., Hillegass, E., & Spiegel, P. (1994). Muscle torque changes caused by inertial exercise training. Journal of Orthopaedic & Sports Physical Therapy, 20(5), 254-261.

Alkner, A. & Tesch A. (2004). Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiologica Scandinavica, 181, 345-357.

Alkner, B. A., Berg, H. E., Kozlovskaya, I., Sayenko, D., & Tesch, P. A. (2003). Effects of strength training, using a gravity-independent exercise system, performed during 110 days of simulated space station confinement. European Journal of Applied Physiology, 90(1-2), 44-49.

Anna, M. & Artur J. (2012). Muscle activity during inertial and free weights exercise. Occupational Therapy: the International Perspective, 6, 217-224.

Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., et al. (2004). Mechanomyographic and electromyographic time and frequency domain responses during submaximal to maximal isokinetic muscle actions of the biceps brachii. European Journal of Applied Physiology, 92(3), 352-359.

Bentley, J. R., Leach, M. A., McCleary, F., Smith, C., Norcross, J., & Hagan, R. D. (2006). Advanced resistive exercise device (ARED) man-in-the-loop test (MILT). NASA/TP, USA.

Berg, H. E., & Tesch, P. A. (1998). Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica, 42(1), 219-230.

Bjorn, A. (2005). Effect of unloading and resistance exercise on skeletal muscle function, size and composition in man. Stockholm. PA: University service US-AB.

Caruso, J. (2012). Standard versus flywheel-based resistive exercise. Journal of Sports Medicine & Doping Studies, DOI: 10.4172/2161-0673.1000e110.

Caruso, J. F., Hamill, J.L., Hernandez, D. A., Yamauchi M. (2005) A comparison of isoload and isoinertial leg press training on bone and muscle outcomes. The Journal of Strength & Conditioning Research, 19, 592-598.

Elliott, B. C., Wilson, G. J., & Kerr, G. K. (1989). A biomechanical analysis of the sticking region in the bench press. Medicine and Science in Sport and Exercise, 21, 450-462.

Glady, O., Constantinos, M., Omar, M., Enrico, T., Enrico R., Islay M. & Marco N. (2008). Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. Journal of Biomechanical, 41, 3133-3138.

Higbie, E. J., Cureton, K. J., Warren III, G. L., & Prior, B. M. (1996). Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. Journal of Applied Physiology, 81(5), 2173-2181.

Hortobagyi, T. I. B. O. R., Hill, J. P., Houmard, J. A., Fraser, D. D., Lambert, N. J., & Israel, R. G. (1996). Adaptive responses to muscle lengthening and shortening in humans. Journal of Applied Physiology, 80(3), 765-772.

Komi, P., Bosco C.(1978). Utilization of stored elastic energy in leg extensor muscles by men and women. Journal of Science and Medicine in Sport, 10, 4261-4265.

Lee, S., Cobb, K., Loehr, J. A., Nguyen, D., & Schneider, S. M. (2004). Foot-ground reaction force during resistive exercise in parabolic flight. Aviation, Space, and Environmental Medicine, 75(5), 405-412.

Lena, N. (2008). Acute and early chronic responses to resistance exercise using flywheel or weight. Stockholm. PA: University service US-AB.

Loehr, J. A., Lee, S. M., English, K. L., Sibonga, J. E. A. N., Smith, S. M., Spiering, B. A., & Hagan, R. D. (2011). Musculoskeletal adaptations to training with the advanced resistive exercise device. Medicine and Science in Sports and Exercise, 43(1), 146-156.

Norrbrand, L., Fluckey, J. D., Pozzo, M., & Tesch, P. A. (2008). Resistance training using eccentric overload induces early adaptations in skeletal muscle size. European Journal of Applied Physiology, 102(3), 271-281.

Naczk, M., Naczk, A., Brzenczek-Owczarzak, W., Arlet, J., & Adach, Z. (2013). Impact of inertial training on strength and power performance in young active men. Journal of Strength and Conditioning Research

Norrbrand, L., Pozzo, M. & Tesch, P. T. (2010). Flywheel resistance training calls for greater eccentric muscle activation than weight training. European Journal of Applied Physiology,110(5), 997–1005.

Norrbrand, L., Tous-Fajardo, J., Vargas, R., & Tesch, P. A. (2011). Quadriceps muscle use in the flywheel and barbell squat. Aviation, Space, and Environmental Medicine, 82(1), 13-19.

Onambélé, G. L., Maganaris, C. N., Mian, O. S., Tam, E., Rejc, E., McEwan, I. M., & Narici, M. V. (2008). Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. Journal of Biomechanics, 41(15), 3133-3138.

Romero-Rodriguez, D., Gual, G., & Tesch, P. A. (2011). Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: A case-series study. Physical Therapy in Sport, 12(1), 43-48.

Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 102(1), 368-373.

Tesch, P. A., Dudley, G. A., Duvoisin, M. R., Hather, B. M., & Harris, R. T. (1990). Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiologica Scandinavica, 138(3), 263-271.

Tesch, P. A., Ekberg, A., Lindquist, D. M., & Trieschmann, J. T. (2004). Muscle hypertrophy following 5‐week resistance training using a non‐gravity‐dependent exercise system. Acta Physiologica Scandinavica, 180(1), 89-98.

Tracy, J. E., Obuchi, S., & Johnson, B. (1995). Kinematic and electromyographic analysis of elbow flexion during inertial exercise. Journal of Athletic Training, 30(3), 254.

下載圖示
QR CODE