研究生: |
李祈叡 Li, Chi-Jui |
---|---|
論文名稱: |
以攝影測量方式建立無人機影像曜光模式之研究 Establishing Sun-glint estimation Model for Unnamed Aerial System Image through Photogrammetry |
指導教授: |
王聖鐸
Wang, Sendo |
口試委員: |
邱式鴻
Chio, Shih-Hong 陳哲銘 Chen, Che-Ming 王聖鐸 Wang, Sendo |
口試日期: | 2023/07/07 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 曜光 、無人機 、攝影測量 、飛行規劃 |
英文關鍵詞: | Sun glint, Unnamed Aerial System, Photogrammetry, Flight planning |
研究方法: | 實驗設計法 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202301565 |
論文種類: | 學術論文 |
相關次數: | 點閱:88 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當光線出射物質表面之角度和衛星或飛行器的感測器達成特定幾何關係,且光線入射表面之粗糙程度與波長達到特定關係時,便會在遙測影像中出現太陽曜光(Sun Glint / Sun Glitter)現象。太陽曜光會對遙測數據造成程度不等之影響,故過去衛星影像領域中已發展出多種太陽曜光偵測與改正的方法。但過去應用於衛星及航照影像的預估或改正模式,是否能有效應用於空間解析度高的無人機影像,仍需進一步驗證。儘管無人機影像領域中已開始有與改正曜光相關的研究正在進行,但目前應用與分析的軟體上還未有太多曜光改正的支援,且多數改正模式需搭配可見光以外之波段進行。
本研究欲於無人機於航線規劃階段,透過研究建立之曜光預估模式,瞭解曜光可能的出現情形,以減少或避免飛行任務結束後出現在航照影像中的曜光影響情形。對研究區域建立地表、太陽及攝影站之空間關係後,分別以過去研究所整理出,以及本研究嘗試簡化自前者概念的計算方式,進行曜光預估的計算。並進一步設計實驗,將實驗成果分別以影像、統計及實體空間的角度,呈現目標飛行時段的曜光結果,以得知目標飛行時段下出現最少曜光的時段,降低後續去除曜光作業時間,並為後續無人機影像曜光處理之相關研究參考。根據研究之模擬,使用攝影測量方式建立之曜光預估模式可使使用者於規劃階段得知曜光於整體影像蒐集過程之分佈,並可依循時間、外方位元素調整的要點,使一日之中可飛行之時段,帶來較高有效影像蒐集效率之飛行規劃。
Sun glint occurs when the angle at which sunlight hits and reflects off a surface aligns perfectly, creating a mirror-like reflection. This intense glare can obstruct crucial details in an image, making it challenging to distinguish objects or features on the Earth's surface. Nowadays, Unmanned Aerial System (UAS) imagery products also suffer from blurring and degradation caused by sun glint, resulting in reduced image contrast, color fidelity in photogrammetry, and compromised radiometric values in remote sensing applications. Various techniques, including detection methods and specialized algorithms, are used to minimize sun glint's impact in satellite imagery. However, it remains uncertain if the processing methods in satellite imagery can effectively applied to images with higher spatial resolution.
By establishing the Geometric Relationship between the earth surface, sun, and sensor, a threshold will be set to determine the presence or absence of sun glint. The threshold determination will be based on past research findings and also on thresholds developed within this study, providing distinct threshold values for different computation methods. The research aims to grasp the impact of sun glint during various time periods by calculating the results before conducting the flight, with the objective of identifying the time period with the least occurrence of sun glint. Utilizing photogrammetric techniques to establish a sun glint prediction model provides users with insights into the distribution of sun glint throughout the entire image acquisition process during the planning phase. This enables the feasibility of planning flight schedules during periods of the day that offer higher efficiency in capturing useful images through adjusting the timing and exterior orientation.
[英文文獻]
Anggoro, A., Siregar, V. P., & Agus, S. B. (2016). The effect of sunglint on benthic habitats mapping in Pari Island using worldview-2 imagery. Procedia Environmental Sciences, 33, 487-495.
Bréon, F., & Henriot, N. (2006). Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. Journal of Geophysical Research: Oceans, 111(C6).
Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., Hench, J. L., & Rovere, A. (2017). Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs, 36(1), 269-275.
Chaudhry, A., Misovec, K., & D'Andrea, R. (2004). Low observability path planning for an unmanned air vehicle using mixed integer linear programming. 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601),
Chiabrando, F., Lingua, A., Maschio, P., & Losè, L. T. (2017). The influence of flight planning and camera orientation in UAVs photogrammetry. A test in the area of Rocca San Silvestro (LI), TUSCANY. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 163.
Chirayath, V., & Earle, S. A. (2016). Drones that see through waves–preliminary results from airborne fluid lensing for centimetre‐scale aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 237-250.
Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97.
Cox, C., & Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Josa, 44(11), 838-850.
David, C. G., Kohl, N., Casella, E., Rovere, A., Ballesteros, P., & Schlurmann, T. (2021). Structure-from-Motion on shallow reefs and beaches: potential and limitations of consumer-grade drones to reconstruct topography and bathymetry. Coral Reefs, 40(3), 835-851. https://doi.org/10.1007/s00338-021-02088-9
Dhanda, A., Remondino, F., & Santana Quintero, M. (2018). A metadata based approach for analyzing UAV datasets for photogrammetric applications.
Doukari, M., Batsaris, M., & Topouzelis, K. (2021). UASea: A Data Acquisition Toolbox for Improving Marine Habitat Mapping. Drones, 5(3), 73.
Eisenbeiß, H. (2009). UAV photogrammetry.
Flynn, K. F., & Chapra, S. C. (2014). Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle. Remote Sensing, 6(12), 12815-12836.
Frulla, L., Milovich, J., & Gagliardini, D. (1995). Illumination and observation geometry for NOAA-AVHRR images. International Journal of Remote Sensing, 16(12), 2233-2253.
Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2-3), 273-282.
Giglio, L., Kendall, J., & Mack, R. (2003). A multi-year active fire dataset for the tropics derived from the TRMM VIRS. International Journal of Remote Sensing, 24(22), 4505-4525.
Giles, A. B., Davies, J. E., Ren, K., & Kelaher, B. (2021). A deep learning algorithm to detect and classify sun glint from high-resolution aerial imagery over shallow marine environments. ISPRS Journal of Photogrammetry and Remote Sensing, 181, 20-26.
Goodman, J. A., Lee, Z., & Ustin, S. L. (2008). Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii. Applied Optics, 47(28), F1-F11.
Graham, R., & Koh, A. (2002). Digital aerial survey: theory and practice. CRC Press.
Hamylton, S. M. (2017). Mapping coral reef environments: A review of historical methods, recent advances and future opportunities. Progress in Physical Geography, 41(6), 803-833.
Harmel, T., & Chami, M. (2013). Estimation of the sunglint radiance field from optical satellite imagery over open ocean: Multidirectional approach and polarization aspects. Journal of Geophysical Research: Oceans, 118(1), 76-90.
Harmel, T., Chami, M., Tormos, T., Reynaud, N., & Danis, P.-A. (2018). Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sensing of Environment, 204, 308-321.
Heege, T., & Fischer, J. (2000). Sun glitter correction in remote sensing imaging spectrometry. SPIE Ocean Optics XV Conference, Monaco,
Hochberg, E. J., Andréfouët, S., & Tyler, M. R. (2003). Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1724-1729.
Hodgson, A., Kelly, N., & Peel, D. (2013). Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PloS one, 8(11), e79556.
Hossain, M., Bujang, J., Zakaria, M., & Hashim, M. (2015). The application of remote sensing to seagrass ecosystems: an overview and future research prospects. International Journal of Remote Sensing, 36(1), 61-114.
Kay, S., Hedley, J. D., & Lavender, S. (2009). Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths. Remote Sensing, 1(4), 697-730.
Kim, K.-L., Kim, B.-J., Lee, Y.-K., & Ryu, J.-H. (2019). Generation of a large-scale surface sediment classification map using unmanned aerial vehicle (UAV) data: A case study at the Hwang-do tidal flat, Korea. Remote Sensing, 11(3), 229.
Kiszka, J. J., Mourier, J., Gastrich, K., & Heithaus, M. R. (2016). Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Marine Ecology Progress Series, 560, 237-242.
Kutser, T., & Jupp, D. L. (2006). On the possibility of mapping living corals to the species level based on their optical signatures. Estuarine, Coastal and Shelf Science, 69(3-4), 607-614.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2008). Remote Sensing and Image Interpretation. Wiley. https://books.google.com.tw/books?id=xFnHAgAAQBAJ
Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251-2259.
Mailhe, L. M., Schiff, C., & Stadler, J. H. (2004). Calipso's Mission Design: Sun-Glint Avoidance Strategies. AAS/AIAA Space Flight Mechanics Conference,
Manconi, A., Ziegler, M., Blöchliger, T., & Wolter, A. (2019). Optimization of unmanned aerial vehicles flight planning in steep terrains. International Journal of Remote Sensing, 40(7), 2483-2492.
Mermelstein, M. D., Shettle, E., Takken, E., & Priest, R. (1994). Infrared radiance and solar glint at the ocean–sky horizon. Applied Optics, 33(25), 6022-6034.
Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442-7455.
Monzon, C., Forester, D. W., Burkhart, R., & Bellemare, J. (2006). Rough ocean surface and sunglint region characteristics. Applied Optics, 45(27), 7089-7096.
Mount, R. (2005). Acquisition of through-water aerial survey images. Photogrammetric Engineering & Remote Sensing, 71(12), 1407-1415.
Muslim, A. M., Chong, W. S., Safuan, C. D. M., Khalil, I., & Hossain, M. S. (2019). Coral reef mapping of UAV: A comparison of sun glint correction methods. Remote Sensing, 11(20), 2422.
O’Shea, R. E., Laney, S. R., & Lee, Z. (2020). Evaluation of glint correction approaches for fine-scale ocean color measurements by lightweight hyperspectral imaging spectrometers. Applied Optics, 59(7), B18-B34.
Ottaviani, M., Stamnes, K., Koskulics, J., Eide, H., Long, S. R., Su, W., & Wiscombe, W. (2008). Light reflection from water waves: Suitable setup for a polarimetric investigation under controlled laboratory conditions. Journal of Atmospheric and Oceanic Technology, 25(5), 715-728.
Overstreet, B. T., & Legleiter, C. J. (2017). Removing sun glint from optical remote sensing images of shallow rivers. Earth Surface Processes and Landforms, 42(2), 318-333. https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4063
Papadopoulou, E.-E., Vasilakos, C., Zouros, N., & Soulakellis, N. (2021). DEM-Based UAV Flight Planning for 3D Mapping of Geosites: The Case of Olympus Tectonic Window, Lesvos, Greece. ISPRS International Journal of Geo-Information, 10(8), 535.
Parrot. (2019). Anafi product sheet white paper https://www.parrot.com/assets/s3fs-public/2021-02/anafi-product-sheet-white-paper-en.pdf
Roth, L., Hund, A., & Aasen, H. (2018). PhenoFly Planning Tool: flight planning for high-resolution optical remote sensing with unmanned areal systems. Plant Methods, 14(1), 116. https://doi.org/10.1186/s13007-018-0376-6
Samad, A. M., Kamarulzaman, N., Hamdani, M. A., Mastor, T. A., & Hashim, K. A. (2013). The potential of Unmanned Aerial Vehicle (UAV) for civilian and mapping application. 2013 IEEE 3rd International Conference on System Engineering and Technology,
Shaw, J. A., & Churnside, J. H. (1997). Scanning-laser glint measurements of sea-surface slope statistics. Applied Optics, 36(18), 4202-4213.
Soules, S. D. (1970). Sun glitter viewd from space. Deep Sea Research and Oceanographic Abstracts,
Stow, D., Nichol, C. J., Wade, T., Assmann, J. J., Simpson, G., & Helfter, C. (2019). Illumination geometry and flying height influence surface reflectance and NDVI derived from multispectral UAS imagery. Drones, 3(3), 55.
Wang, M., & Bailey, S. W. (2001). Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Applied Optics, 40(27), 4790-4798.
Windle, A. E., & Silsbe, G. M. (2021). Evaluation of unoccupied aircraft system (UAS) remote sensing reflectance retrievals for water quality monitoring in coastal waters. Frontiers in Environmental Science, 9, 674247.
Zhang, H., & Wang, M. (2010). Evaluation of sun glint models using MODIS measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(3), 492-506.
[中文文獻]
Stantec Consulting Services Inc., T. B. (2012)。101年度新北巿高灘地人工溼地經營管理與功能效益分析計畫 期中報告。新北巿政府高灘地工程管理處。
何維信。 (1995)。 航空攝影測量學。大中國圖書公司。
林致遠。 (2016)。 應用遙測影像之水深校正於東沙環礁海草棲地變遷 [未出版博士論文]。國立中央大學遙測科技碩士學位學程。
施伶蒨。 (2011)。 應用二維經驗模態分解消除水域影像日光返照 [未出版博士論文]。國立交通大學土木工程學系。