簡易檢索 / 詳目顯示

研究生: 鄧敦平
Tun-Ping Teng
論文名稱: 蒸汽壓縮機械過冷卻系統提升冷凍機性能之研究
Research on Improving Performance of Refrigeration by Mechanical-Subcooling Vapor-Compression System
指導教授: 陳明堂
Chen, Ming-Tang
卓清松
Jwo, Ching-Song
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 140
中文關鍵詞: 過冷卻性能係數毛細管關連度分析回歸方程式
英文關鍵詞: subcooling, coefficient of performance, capillary tube, analysis of correlation, regression equation
論文種類: 學術論文
相關次數: 點閱:593下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究旨在探討蒸汽壓縮機械過冷卻對於冷凍機性能提升的關係。基於此一目的,本研究首先針對過冷卻溫度對各系統溫度參數的影響加以探討,並進一步分析過冷卻溫度對各系統性能係數與消耗電力的影響,根據分析結果提出解決耗能問題的運轉模式。
    本研究首先探討相關文獻,作為研究理論基礎,並針對蒸汽壓縮循環各部組件進行探討。本研究經由各種液管過冷卻學說進行分析與討論,選定外部液管過冷卻系統的形式,分析其性能提升的相關之理論,並進行過冷卻對冷凍庫性能係數的模擬評估。在節流元件方面,主系統仍使用原本廠商安裝的熱膨脹閥,過冷卻系統的節流元件則是使用毛細管,毛細管的相關設計是參考相關文獻的推導與圖表配適法進行R-134a冷媒毛細管設計與分析,並實際使用在過冷卻系統上。
    本研究主要發現與結論如下:(一)由關連度分析中發現,過冷卻影響最大者是蒸發器、冷凝器冷媒側與壓縮機的溫度,並非只是單純的增加液管焓差,提升COP而已,其它的系統因數也受到相當的影響,值得後序研究者的重視。(二)就全系統性能係數COPtotal而言,利用二次回歸方程式延伸過冷卻溫度範圍可以發現,在本實驗條件之下,液管溫度在2℃時有最佳性能係數,再增加過冷度,全系統性能係數COPtotal反而下降。(三)至於全系統消耗電力KWtotal方面,液管溫度在15℃時,有最低全系統消耗電力,再增加過冷度,消耗電力反而會隨之上升。在本實驗的過冷卻溫度範圍中,全系統的性能係數確實能獲得提升,使得理論與實際的相關性得以證明,並依據研究結果提出若干建議以供後序研究者參考。
    關鍵詞:過冷卻、性能係數、毛細管、關連度分析、回歸方程式

    Abstract
    This subject is the study of the relationship between subcooling of liquid refrigerant and promotion of performance of refrigerator. For this purpose, the effects of subcooling temperature on the parameters of the system were discussed firstly in this subject, and then the effects on parameters and consumption of electric power were analyzed. Furthermore, an operational model was proposed to solve the problem of energy consuming according to the result of the analysis.
    The mainly discoveries and conclusions in this context are as follows. First, from the analysis of correlation, there are great effects of subcooling on the temperature of the evaporator, the refrigerant of condenser and compressor. Furthermore, it do not only increase the difference in enthalpy of the liquid pipe to promote COP, but also quite affects other systematic factors, which is worth being studied by the following researchers. Second, as to the coefficient of the totally systematic performance, COPtotal, it was found that there was the best COPtotal at 2℃ of temperature of the liquid line under this experimental condition but COPtotal decreased for the lower subcooling temperature by utilizing regression equations to extend the range of subcooling temperature. Third, as to the consuming electric power of the total system, KWtotal, there was the lowest KWtotal at 15℃ of temperature of the liquid line but KWtotal increased for the lower subcooling temperature. Therefore, it was found that the COP of this system could be promoted actually within the range of subcooling temperature in this experiment, and thus the correlation between theory and practice was proved, so some suggestions based on the results of this study could be references for the following researchers.
    Key words: subcooling, coefficient of performance, capillary tube, analysis of correlation, regression equation

    總 目 錄 謝 誌 ……………………………………………………………… i 摘 要 …………………………..…………………………………… ii Abstract ……………………………………………….…………… iii 目 錄 ……………………….…………………………………… v 圖 目 錄 …………………………………………………………… vii 表 目 錄 …………………………………………………………… x 符號釋義 …………………………………………….…………. xii 目 錄 第一章 緒論 1-1 研究背景與研究動機 …………………….……….…… 1 1-2 研究目的與研究問題 …………………….……….…… 4 1-3 研究限制 ………………………………….……….…… 5 1-4 論文架構 ………………………………….……….…… 6 1-5 文獻回顧 ………………………………….……….…… 8 1-6 名詞釋意 …………………………………..…….…… 10 第二章 理論基礎與文獻探討 2-1 蒸汽壓縮循環冷凍系統 ………………………………. 13 2-2 影響冷凍機性能的要素 ………………………………. 19 2-3 液管過冷卻 ……………………………………………. 24 2-4 節流元件設計 …………………………………………. 33 2-5 過冷卻對於系統的影響 ……………..……….……….. 43 第三章 實驗設計 3-1 蒸汽壓縮機械過冷卻系統系統分析 …………..……. 45 3-2 蒸汽壓縮機械過冷卻系統電腦模擬分析 ………….…. 51 3-3 關連度分析 ……………………………………………. 58 3-4 實驗設備與儀器安裝 ………………………….………. 59 3-5 蒸汽壓縮機械過冷卻系統實驗方法與程序 ….…...…. 61 第四章 實驗結果與分析 4-1 標稱過冷卻溫度與實測過冷卻溫度的差異關係 ..….. 63 4-2 主系統蒸發器與過冷卻溫度的關係 ……………….… 67 4-3 主系統壓縮機與過冷卻溫度的關係 ……………..….. 73 4-4 主系統冷凝器與過冷卻溫度的關係 ………….…… 77 4-5 性能係數與過冷卻溫度的關係 ……………….…… 86 4-6 消耗電力與過冷卻溫度的關係 ………………..…… 90 4-7 關連度分析 ……………………..……………..…….. 97 4-8回歸分析 ……………………….………………. 101 4-9 平均測試數據總表 ……………………….…………. 106 第五章 結論與建議 5-1 結論 …………………………………………….….… 111 5-2 建議 ……………………………………….…….…… 117 參考文獻 中文部分 ………………………………….……………… 120 英文部分 …………………………………….…………… 122 附錄 附錄一:毛細管應用圖表 ………………………………… 124 附錄二:冷媒性質圖表 …………………………………… 127 附錄三:設備配置圖 ……………………………………. 133 附錄四:實驗設備實體照片 ……………….…………… 136 略傳 圖 目 錄 圖1-1.1 蒸發溫度(壓力)變化對壓縮功的影響 ……………………….…. 2 圖1-1.2 二段壓縮系統莫利爾線圖 ………………………………….……. 2 圖1-1.3 液管過冷卻對蒸發器焓差的影響 ………………………………. 3 圖1-4.1 研究架構 ……………………………………………………….…. 7 圖2-1.1 逆卡諾循環示意圖 ………………………………………………. 13 圖2-1.2 蒸汽壓縮循環系統圖(a)蒸汽壓縮循環示意圖(b)蒸汽壓縮 循環T-S圖 ………………………………………..………….……. 17 圖2-1.3 蒸汽壓縮循環壓-焓圖 …………………………….………...……. 17 圖2-1.4 基本蒸汽壓縮循環冷凍系統圖 ……………………………...……. 18 圖2-2.1 壓縮比與壓縮功的關係 …………………………………….……. 20 圖2-2.2 冷凝溫度變化之莫利爾線圖 ……………………………….……. 21 圖2-2.3 節流元件與液管過冷度變化之莫利爾線圖 ………………..……. 22 圖2-2.4 吸氣管過熱變化之莫利爾線圖 …………………………….……. 23 圖2-3.1 回流管過冷卻系統(a)系統圖(b)莫利爾線圖。 ………..…. 26 圖 2-3.2 整體式機械蒸汽壓縮過冷卻系統(a)系統圖(b)莫利爾線圖 .... 30 圖2-3.3 過冷卻熱交換器質能平衡示意圖 ………………………………. 30 圖 2-3.5 外部蒸汽壓縮機械過冷卻系統(a)系統圖(b)莫利爾線圖 ………. 32 圖2-4.1 典型毛細管溫度壓力關係圖(ASHRAE, 1994 ,p.44.22) …….…. 34 圖2-4.2 考慮介穩態區之毛細管長度-溫度-壓力關係圖 …………………. 36 圖2-4.3 考慮介穩態區之毛細管長度-溫度-壓力關係圖(Chen,1990) ... 38 圖2-4.11 熱膨脹閥構造圖(Whitman, W. C. & Johnson, W. M. ,1991,p290) . 41 圖2-4.12 熱膨脹閥壓力平衡示意圖 …………………………………..……. 42 圖3-1.1 外部蒸汽壓縮機械液管過冷卻系統管路配置圖 …………………. 46 圖3-2.1 冷凍循環莫利爾線圖 ………………………………………………. 51 圖3-2.2 主系統性能係數模擬計算流程圖 …………………………………. 54 圖3-2.3 固定蒸發溫度與冷凝溫度下,過冷卻溫度與COP的關係圖 (Tevap=-25℃,Tcond=45℃) ……………………….……. 55 圖3-2.4 不同冷凝溫度與過冷卻溫度之下與主系統COP的關係 …………. 56 圖3-2.5 不同蒸發溫度與過冷卻溫度之下與主系統COP的關係 ….……. 57 圖3-5.1 外部蒸汽縮機械過冷卻系統之實驗程序 …………………….…. 62 圖4-1.1 標稱過冷卻溫度與實測過冷卻器出入口溫度關係圖 ……………. 65 圖4-1.2 標稱過冷卻溫度與實測過冷卻溫差關係圖 ………………………. 66 圖4-2.1 主系統蒸發器冷媒側出入口平均溫度與過冷卻溫度的關係圖 …. 68 圖4-2.2 主系統蒸發器冷媒側出入口平均溫差與過冷卻溫度的關係圖 …. 69 圖4-2.3 主系統蒸發器空氣側出入口平均溫度與過冷卻溫度的關係圖 …. 71 圖4-2.4 主系統蒸發器空氣側出入口平均溫差與過冷卻溫度的關係圖 …. 72 圖4-3.1 主系統壓縮機吸氣溫度與過冷卻溫度的關係圖 …………………. 74 圖4-3.2 主系統壓縮機排氣溫度與過冷卻溫度的關係圖 …………………. 75 圖4-3.3 主系統壓縮機吸排氣溫差與過冷卻溫度的關係圖 ………………. 76 圖4-4.1 主系統冷凝器冷媒側出入口溫度與過冷卻溫度的關係圖 ….…. 78 圖4-4.2 主系統冷凝器冷媒側出入口溫差與過冷卻溫度的關係圖 …..…. 79 圖4-4.3 主系統冷凝器空氣側入出口乾球溫度與過冷卻溫度的關係圖 … 81 圖4-4.4 主系統冷凝器空氣側入出口乾球溫差與過冷卻溫度的關係圖 … 82 圖4-4.5 主系統冷凝器空氣側入出口濕球溫度與過冷卻溫度的關係圖 ... 84 圖4-4.6 主系統冷凝器空氣側入出口濕球溫差與過冷卻溫度的關係圖 ... 85 圖4-5.1 主系統性能係數與過冷卻溫度的關係圖 ………………….……. 87 圖4-5.2 過冷卻系統性能係數與過冷卻溫度的關係圖 …………….……. 88 圖4-5.3 全系統性能係數與過冷卻溫度的關係圖 ………………………. 89 圖4-6.1 主系統消耗電力與過冷卻溫度的關係圖 ………………………. 91 圖4-6.2 過冷卻系統消耗電力與過冷卻溫度的關係圖 …………………. 92 圖4-6.3 全系統消耗電力與過冷卻溫度的關係圖 ………………………. 93 圖4-6.4 加裝過冷卻系統之主系統消耗電力與無加裝過冷卻之主系統 消耗電力比值關係圖 ……………………………………………. 95 圖4-6.5 過冷卻系統之各過冷卻溫度消耗電力與最高過冷卻溫度……… (SUB=26℃)消耗電力比值關係圖 ………………….………. 96 圖4-8.1 全系統性能係數與二次曲線回歸配適圖 …………………..….. 102 圖4-8.2 全系統消耗電力與二次曲線回歸配適圖 ……….……………. 103 圖4-8.3 全系統性能係數數據預測曲線圖 …………………….……… 104 圖4-8.4 全系統消耗電力數據預測曲線圖 ………………….……….. 105 表 目 錄 表3-2.1 R-22冷媒溫度焓值關係方程式常係數一覽表 …………………. 52 表3-4.1 使用儀器設備一覽表 ……………………………………….……. 60 表4-7.1 蒸發器冷媒側溫度與實測過冷卻溫度的積差相關一覽表 …… 97 表4-7.2 蒸發器空氣側溫度與實測過冷卻溫度的積差相關一覽表 ……98 表4-7.3 壓縮機溫度與實測過冷卻溫度的積差相關一覽表 ……………. 98 表4-7.4 冷凝器冷媒側溫度與實測過冷卻溫度的積差相關一覽表 ……. 98 表4-7.5 冷凝器空氣側乾球溫度與實測過冷卻溫度的積差相關一覽表 … 99 表4-7.6 冷凝器空氣側濕球溫度與實測過冷卻溫度的積差相關一覽表 … 99 表4-7.7 系統各COP與實測過冷卻溫度的積差相關一覽表 ……….… 100 表4-7.8 系統各消耗電力與實測過冷卻溫度的積差相關一覽表 …..… 100 表4-8.1為全系統性能係數二次曲線回歸一覽表 …………………. 101 表4-8.1 全系統消耗電力二次曲線回歸一覽表 …………………..….. 101 表4-8.3 全系統性能係數數據預測一覽表 ………………………....…. 101 表4-8.4 全系統消耗電力數據預測一覽表 ………………..…………… 102 表4-9.1 標稱過冷卻溫度與實測過冷卻溫度的差異關係一覽表 106 表4-9.2 主系統蒸發器入出口溫度與過冷卻溫度的關係一覽表 106 表4-9.3 主系統壓縮機入出口溫度與過冷卻溫度的關係一覽表 107 表4-9.4 主系統冷凝器冷媒側入出口溫度與過冷卻溫度的關係 一覽表 ……………………………………………..… 107 表4-9.5 主系統冷凝器空氣側乾球入出口溫度與過冷卻溫度的 關係一覽表 ………………………………..…………. 108 表4-9.6 主系統冷凝器空氣側濕球入出口溫度與過冷卻溫度的 關係一覽表 ……………………………..…..……… 108 表4-9.7 性能係數與過冷卻溫度的關係一覽表 ……………... 109 表4-9.8 消耗電力與過冷卻溫度的關係一覽表 ……………... 109 表4-9.9 空氣側風速狀態一覽表 …………………………...….. 110 符 號 釋 義 Q 熱量KJ/Kg 下 標 W 消耗功率KJ/s=KW total 全系統 T 溫度℃、。K Evap 蒸發器 C 熱容量=mcp cond 冷凝器 m 質量流率Kg/s w 壓縮機功率 Cp 定壓比熱 u 膨脹閥入口 Cv 定容比熱 Comp,w 壓縮機 h 焓KJ/s fan 風扇 S 熵 in 入口 P 壓力KPa out 出口 ρ 密度Kg/m3 sub 過冷卻溫度=液管溫度Tliq. v 比容m3/Kg subt 實測過冷卻=實測液管溫度Tliq.' COP 性能係數 ref 冷媒 ε 熱交換器熱交換率 main 主系統 x 冷媒乾度 sub 過冷卻 d 管徑m;mm loss 損失 A 面積m2 o 內部 U 熱傳量KW I 外部 V 體積m3 dis 排氣 Z Z分數 suc 吸氣 rxy 積差關連度係數 Sub.diff 過冷度 平均數 P.R 壓縮比 單 位 換 算 1atm=101.3KPa=1.033Kg/m2=14.7Psi 上 標 1RTUS=12000BTUh=3024Kcal/hr main 主系統 1Kcal=4.18KJ sub 過冷卻 loss 損失

    中文部分
    王致平(民87)。一元雙級冷凍系統之分析與設計。國立台灣大學機械工程研究所碩士論文。
    王啟川(民89)。套管式熱交換器。冷凍與空調雙月刊,4,69-82
    王輔仁 編譯(民83)。冷凍工程原理設計與應用。台北:文京圖書有限公司。
    古希人、劉威士、徐仁勳(民86)。工程名詞-機械工程篇,修訂12版。台北:科技圖書公司。
    吳義兼(民81)。空調冷凍工程設計與施工(上)-(設計篇)。台北:徐氏基金會。
    呂逸偉(民86)。溫度式膨脹閥對R-134a冷媒之冷凍系統研究。國立台灣大學機械工程研究所碩士論文。
    李魁鵬(民84)。中間冷卻式冷凍循環之有限時間之熱力分析。國立成功大學機械工程研究所碩士論文。
    卓清松(民86)。套裝儲冰式分離型冷氣機之開發研究。國立台灣大學機械工程學研究所博士論文。
    林清山 (1992)。心理與教育統計學。台北:東華書局。pp.117-143
    許豐智(民85)。不可逆冷凍循環之熱力分析。國立成功大學機械工程研究所碩士論文。
    連錦杰 編著(民77)。冷凍工程。台北:大中國圖書公司。
    連錦杰 編譯(民76)。空氣調節原理。台北:師友工業圖書公司。
    郭誠恕、林振源(民89)。碳氫冷媒冰箱技術發展現況。冷凍與空調雙月刊,4,150-158。
    郭誠恕、張文瑞、林振源(民88)。毛細管原理與性能測試。中華民國冷凍空調學會季刊,28, 34-43。
    陳呈芳 編著(民84)。 熱力學概論。台北:全華圖書公司。
    陳呈芳 譯(民75)。工程熱力學與應用。台北:東華書局。
    陳芝九 著(1998)。製冷系統熱動力學。北京:機械工業出版社。
    陳博文(民81)。精通冷凍空調自動控制。台北:千華出版公司。
    陳博文(民82)。精通冷凍空調工程。台北:千華出版公司。
    陳博文(民83)。精通冷凍空調設備製造,II-66-79。台北:千華出版公司。
    陳銘章 編著(民88)。冷凍工程。台北:長諾資訊圖書公司。
    楊政諭(民89)。淺談冰水主機之性能係數與設計。冷凍與空調雙月刊,4,100-107。
    楊春欽 譯(民69)。熱傳遞學。台北:科技圖書公司。
    楊敏雄(民87)。冷凍系統之熱性能分析。國立台灣海洋大學航運技術研究所碩士論文。
    劉建志(民83)。冷凍循環有限時間之熱力分析。國立成功大學機械工程研究所碩士論文。
    謝陽彬(民81)。冷凍工程。台北:全華科技圖書有限公司。
    蘇金佳 譯(民84)。冷凍與空調。台北:國立編譯館。

    英文部分
    ALCO Controls. (1992). Components for the Refrigeration and Air-Conditioning Industry. ALCO Controls.
    ASHRAE. (1992). HVAC System and Equipment. 1992 ASHRAE Handbook. American Society of Heating, Refrigeration & Air-conditioning Engineers.
    ASHRAE. (1993). Fundamentals. 1993 ASHRAE Handbook. American Society of Heating, Refrigeration & Air-conditioning Engineers.
    ASHRAE. (1994). Refrigeration. 1994 ASHRAE Handbook. American Society of Heating, Refrigeration & Air-conditioning Engineers.
    ASHRAE. (1997). Fundamentals. 1997 ASHRAE Handbook. American Society of Heating, Refrigeration & Air-conditioning Engineers.
    ASHRAE(1998). Refrigeration. 1998 ASHRAE Handbook. American Society of Heating, Refrigeration & Air-conditioning Engineers.
    Bolstad, M. M. & Jorden, R. C. (1948). Theory and use of the capillary tube expansion device. Refrigeration Engineer. Vol.56,519.
    Burghardt, M., David, H. & James, A. (1993). Engineering Thermodtnamics with Applications, 4ed. Harper Collins.
    Chen, Z. H., Li, R. Y.., Lin, S. & Chen, Z. Y. (1990). A correlation for metastable flow of refrigerant 12 through capillary tubes. Int. J. Refrig. ,Vol.13, pp181-186 .
    Cooper, L., Chu, C. K. & Brisken, W. R. (1957). .Simple select method for capillaries derived from physical flow conditions. Refrigerating. pp572-593.
    Dongsoo, J., Chunkun, P. & Byungjin, P. (1999). Capillary tube selection for HCFC alternatives. International Journal of Refrigeration 22. pp.604-614.
    Dossat , R. J. (1991). Principles of refrigeration-3rd. Prentice-Hall, Inc.
    Fmills , A. (1999). Heat Transfer, 2ed. Prentice-Hall,Inc.
    Khan , J. R. & Zubair, S. M. (2000). Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system. Energy Conversion&Management. 41,1201-1222.
    Melo , C., Ferreira , R. T. S., Boabaid, N. C., Goncalves, J. M. & Mezavila, M. M. (1999). An experimental analysis of adiabatic capillary tubes . Applied Thermal Engineering 19, 669-684.
    Stoecker, W. F. & Jones, J. W. (1982). Refrigeration and air conditioning. McGraw-Hill Publishing Company.
    Taborek, J. (1998). Double Pipe and Multi-Tube Heat Exchanger. Heat.
    Wang, S. K. (1994). Handbook of air condition and refrigeration. McGraw-Hill Publishing Company.
    Whitman , W. C. & Johnson, W. M. (1991). Refrigeration & air conditioning Technology, 2ed. DELMAR Publishers INC.
    Wolf, D. A. & Pate, M. B. (1995). Adiabatic capillary tube performance with alternative refrigerant. ASHRAE research project RP-762 .
    Wolf, D. A. (1995). Adiabatic capillary tube performance with alternative refrigerant . ASHRAE, final report.
    Wu, C., Chen, L., Sun, F. & Chen, W. (1995). General performance characteristics of a finite-speed carnot refrigerator. Applied Thermal Engineering, Vol.16. No.4, pp.299-303.

    QR CODE