簡易檢索 / 詳目顯示

研究生: 林若凱
Ruo-Kai Lin
論文名稱: 甲基轉移酵素在肺癌病人變異的臨床研究及分子機制以及其作為新穎標靶抗癌藥物之探討
The Clinical Correlation and Molecular Mechanism Study of DNA Methyltransferase Alterations in Lung Cancer and its Application in Anti-Cancer Treatment
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 120
中文關鍵詞: 甲基轉移酵素p53 基因RB 蛋白香菸致癌物NNKMithramycin 藥物非小細胞肺癌
英文關鍵詞: DNMT, p53 gene, RB protein, NNK, Mithramycin, NSCLC
論文種類: 學術論文
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抑癌基因的啟動子位置上若被過度甲基化,導致該基因的不表達,往往造成腫瘤的生成。負責將啟動子甲基化的酵素是甲基轉移酵素(DNA 5’-cytosine-methyltransferase, DNMT),包括有DNMT1、DNMT3a及DNMT3b;但其在肺癌病人或細胞模式中並未有完整之變異分子機制與臨床研究,且其在癌症病人及細胞常發生不正常活化的改變,故引發出在癌症的治療中將 DNMT 作為癌症治療標靶的想法。本研究在所檢測的100位非小細胞肺癌病人發現,其DNMT1、DNMT3a及DNMT3b mRNA及protein在腫瘤組織比正常肺組織有顯著過度表達的情形,P值分別有0.002、0.034 及0.027;特別是在鱗狀上皮細胞癌 (squamous carcinoma, SQ) 的病人統計發現DNMT1的蛋白有過度表達的情形,P值達0.04。當這些病人同時過度表達DNMT1及DNMT3b時,則顯示與p16INK4a、RARβ及FHIT 抑癌基因啟動子過度甲基化有關,P值達0.006。在病人的腫瘤組織採組織染色質免疫沉澱分析 (tissue chromatin immunoprecipitation) 的確發現DNMT1及DNMT3b蛋白是結合在過度甲基化的p16INK4a、RARβ及FHIT 基因啟動子上。
    為了檢查DNMTs過度表達的原因,於是在肺癌細胞株H1299(不含p53基因)送入DNMTs的一個可能的負調控蛋白Wild-type p53,來了解p53對DNMTs啟動子的影響。本研究採用營火蟲冷光啟動子活性分析,發現Wild-type p53可抑制DNMT1、DNMT3a及DNMT3b的啟動子活性,且在H1299肺癌細胞株長期表達Wild-type p53時,發現內生性的DNMTs之mRNA與蛋白表現量有下降的情形。而突變的p53蛋白則有增加其啟動子活性的趨勢。在病人組織樣本裡發現,這些有過度表達DNMT1的病人的確有p53 基因突變的情形,P值達0.016。這些病人同時以免疫組織染色來偵測DNMT1另一個可能的負調控蛋白RB,發現有過度表達DNMT1的病人同時伴隨著RB蛋白表達過低,P值達0.014。本研究進一步在正常的肺組織中利用組織染色質免疫沉澱分析,檢測到Wild-type p53及RB蛋白可以結合在DNMT1、DNMT3a及DNMT3b的啟動子上。DNMTs除了受轉錄的調控之外,此研究更發現DNMT1的過度表達的病人與吸煙有顯著的相關,P值達0.037。在正常肺細胞IMR-90及肺癌細胞H1299測試下發現,DNMT1、3a及3b的蛋白質表現量可受香煙致癌物4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)的誘導而使其上升;此外,利用組織染色質免疫沉澱分析,發現在NNK處理細胞之後相較於控制組,檢測到DNMT1及DNMT3b蛋白結合在p16INK4a、RARβ及FHIT的啟動子上的程度顯著增加,該啟動子也的確被檢測是呈現過度甲基化。因此我們推測肺癌病人DNMTs的過度表達的原因可分為兩類:一是分子層次中的p53及RB變異有關,因其失去了負調控DNMT轉錄的能力;另一則是與吸煙有關,因香菸致癌物會誘導DNMTs的蛋白質表現量上升。而過度表達的DNMTs則使抑癌基因過度甲基化,最後導致肺癌的發生。
    由於癌細胞基因體普遍出現CpG島群的甲基化異常而使抑癌基因失去活性的現象,因此抑制形成CpG島群的甲基化的藥物正可以作為恢復抑癌基因的表現及活化癌細胞中抑制癌症的重要路徑的新穎標靶藥物。而Mithramycin A (簡稱MMA)是一個會與富含GC及CG 序列的DNA 結合之藥物,因此本研究檢測癌細胞在經過MMA的處理之後,是否會抑制CpG島群甲基化的情形。我們發現當以低劑量(10 nM)的MMA處理癌細胞14天後,會減少轉移抑癌基因SLIT2及TIMP3的CpG島群過度甲基化的情形,並進而使這個具有抑制癌細胞轉移的SLIT2及TIMP3重現基因表達。同時間藉由膜穿透 (transwell) 實驗我們也發現MMA可降低具有高轉移能力的癌細胞CL1-5的穿越及移動能力。為了暸解MMA的作用途徑,我們使用西方點漬法發現MMA會使DNMT1蛋白明顯下降,但是DNMT1的基因表現不受影響。使用分子模擬 (molecular modeling) 發現DNMT的催化位置可被MMA藥劑所鍵結。總結研究結果發現,MMA具有去DNA甲基化及抑制癌細胞轉移的潛力。而抑制的機轉可能藉由抑制DNMT酵素催化能力並降低癌細胞中DNMT1的蛋白表達量,進而導致抑制癌細胞轉移的基因啟動子去甲基化且重新恢復表達。
    本研究為首篇在肺癌病人或細胞模式針對三種主要甲基轉移酵素DNMT1, DNMT3a, DNMT3b完整之變異分子機制與臨床研究,且在肺癌細胞以GC DNA結合之MMA驗證其抑制 DNMT 作為癌症治療標靶的想法。

    Down-regulation of tumor suppressor genes (TSGs) by hypermethylation of 5’CpGs is one of the important events involved in tumor development. However, mechanism of overexpression of DNA 5’-cytosine-methyltransferase (DNMT), which is enzyme that methylates the cytosine residue of CpGs, and the clinical significance of DNMT alterations remain unclear in many cancers. In the current study, we demonstrated that the mRNA and protein of DNMT1, DNMT3a, and DNMT3b genes were expressed in a coordinate manner in most tissues and at a significantly higher level in 100 non-small cell lung cancer (NSCLC) tumors than in adjacent non-tumorous lung tissues (P = 0.002, P = 0.034 and P = 0.027, respectively). The patients with DNMT1 overexpression showed poor prognosis especially in squamous carcinoma (SQ) lung cancer (P = 0.04). The patients with overexpression of both DNMT1 and DNMT3b correlated with hypermethylation in the p16INK4a, RARβ, and FHIT promoters, especially in smoking SQ patients (P = 0.006). The physical binding of DNMT to these promoters was identified by tissue chromatin immunoprecipitation in lung tumors of NSCLC patients.
    To understand what the mechanisms are for DNMTs overexpression in lung cancer, we performed DNMT1 promoter luciferase assay and found that wild-type p53 could negatively regulate the DNMT1, DNMT3a and DNMT3b promoters. The mRNA expression level of DNMT1 and DNMT3b was significantly reduced when transfected with wild-type p53 construct to H1299 which is originally a p53 null cell. In normal lung tissue, the physical binding of wild-type p53 and RB to DNMT1 promoters was identified by chromatin immunoprecipitation PCR. We further analyzed the correlation between overexpression of DNMTs and alterations of p53 gene and RB protein. A significant association between DNMT overexpression with the p53 gene mutation (P = 0.016) and low RB expression (P = 0.014) was found. The results also showed that DNMT1 protein overexpression was significantly associated with those who are smoker (P = 0.037). In addition, we treated the model cells including IMR-90 (normal lung cell) and H1299 (lung cancer cell) with smoking carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK), the protein expressions of DNMT1, 3a and 3b were induced. Interestingly, DNMT1 and DNMT3b proteins were detected at p16INK4a, RARβ, and FHIT promoters showing hypermethylation after treated with NNK. These data suggest that deregulation of DNMTs was associated with smoking and the loss of transcriptional repression of the p53 and RB. DNMT overexpression results in epigenetic alteration of target TSGs and ultimately leads to NSCLC tumorigenesis and poor prognosis.
    Pharmacologic inhibitors of CpG island methylation provide a rational approach to reactivate the TSGs in tumor cells and restoring of critical cellular pathways in cancer cells. Mithramycin A (MMA) is known to be a GC and CG-rich DNA binding agent. We sought to determine whether MMA could inhibit CpG island methylation and DNMT expression in lung cancer cells. We found that MMA reduced CpG island methylation of anti-metastasis TSGs, including slit homolog 2 (SLIT2) and tissue inhibitor of metalloproteinase 3 (TIMP3) genes, and associated with the prevention of metastasis. When highly metastatic CL1-5 lung cancer cells were treated with low does (10 nM) of MMA for 14 days, they re-expressed mRNA levels for SLIT2 and TIMP3 genes. MMA also inhibited the invasion phenotypes of CL1-5 cells as indicated by its inhibition of cancer cell migration using wound healing and transwell assays. Molecular docking of MMA onto the DNMT1 catalytic domain revealed that MMA may interact with the catalytic pocket of DNMT1. Western blots showed that DNMT1 protein levels were depleted after MMA. These data support the idea that MMA has demethylation and anti-metastasis effects on lung cancer cells. This mechanism may be mediated by interaction of MMA with DNMT1, leading to the depletion of DNMT1 protein and reversal of the metastasis phenotype in lung cancer cells.
    Our data is the first comprehensive molecular and clinical study on overexpression of various DNMTs in the same serious of lung cancer cohort. The deregulation of DNMTs was associated with smoking and the loss of transcriptional repression of the p53 and RB. In addition, GC-rich binding reagent such as MMA can be potential DNMT inhibitor thus for novel therapeutic development.

    CONTENTS Abstract ( 1 ) Text ( 5 ) Preface ( 5 ) Aim 1: The correlation of DNA methyltransferase alteration and TSGs hypermethylation A. Introduction ( 7 ) B. Purpose ( 13 ) C. Materials and Methods ( 13 ) D. Results ( 17 ) E. Discussion ( 20 ) Aim 2: The Mechanism of DNMTs Overexpression in Cancer A. Introduction ( 23 ) B. Purpose ( 28 ) C. Materials and Methods ( 28 ) D. Results ( 33 ) E. Discussion ( 37 ) Aim 3: The Application of DNMT Inhibitor in Anti-Cancer Treatment A. Introduction ( 42 ) B. Purpose ( 44 ) C. Materials and Methods ( 44 ) D. Results ( 48 ) E. Discussion ( 50 ) Conclusions ( 54 ) References ( 56 ) Tables Table 1 ( 74 ) Table 2 ( 75 ) Table 3 ( 76 ) Table 4 ( 77 ) Table 5 ( 79 ) Table 6 ( 80 ) Table 7 ( 81 ) Table 8 ( 82 ) Table 9 ( 83 ) Figures Figure 1 ( 84 ) Figure 2 ( 85 ) Figure 3 ( 86 ) Figure 4 ( 87 ) Figure 5 ( 88 ) Figure 6 ( 89 ) Figure 7 ( 90 ) Figure 8 ( 91 ) Figure 9 ( 92 ) Figure 10 ( 93 ) Figure 11 ( 94 ) Figure 12 ( 96 ) Figure 13 ( 97 ) Figure 14 ( 98 ) Figure 15 ( 99 ) Figure 16 ( 100 ) Figure 17 ( 101 ) Figure 18 ( 102 ) Figure 19 ( 103 ) Appendix 1 ( 104 ) Appendix 2 ( 113 )

    1. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin 2004;54:8-29.
    2. Department Of Health Executive Yuan T, R.O.C. 2006.
    3. Sekido Y, Fong KM, and Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1998;1378:F21-59.
    4. Nephew KP and Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 2003;190:125-133.
    5. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001;20:3139-3155.
    6. Hermann A, Gowher H, and Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004;61:2571-2587.
    7. Laird PW. Cancer epigenetics. Hum Mol Genet 2005;14 Spec No 1:R65-76.
    8. Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004;4:707-717.
    9. Momparler RL. Cancer epigenetics. Oncogene 2003;22:6479-6483.
    10. Esteve PO, Chin HG, and Pradhan S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci U S A 2005;102:1000-1005.
    11. El-Osta A. DNMT cooperativity--the developing links between methylation, chromatin structure and cancer. Bioessays 2003;25:1071-1084.
    12. Li E, Beard C, and Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993;366:362-365.
    13. Tzao C, Tsai HY, Chen JT, Chen CY, and Wang YC. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer 2004;40:2175-2183.
    14. Rountree MR, Bachman KE, and Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000;25:269-277.
    15. Callebaut I, Courvalin JC, and Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 1999;446:189-193.
    16. Liu Y, Oakeley EJ, Sun L, and Jost JP. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 1998;26:1038-1045.
    17. Lee JH, Voo KS, and Skalnik DG. Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol Chem 2001;276:44669-44676.
    18. Fatemi M, Hermann A, Pradhan S, and Jeltsch A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 2001;309:1189-1199.
    19. Pradhan S, Talbot D, Sha M, Benner J, Hornstra L, Li E, et al. Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res 1997;25:4666-4673.
    20. Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene 1988;74:9-12.
    21. Goyal R, Reinhardt R, and Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 2006;34:1182-1188.
    22. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, and Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997;277:1996-2000.
    23. Zimmermann C, Guhl E, and Graessmann A. Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol Chem 1997;378:393-405.
    24. Hermann A, Schmitt S, and Jeltsch A. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 2003;278:31717-31721.
    25. Siedlecki P and Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol 2006;53:245-256.
    26. Chen T, Tsujimoto N, and Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 2004;24:9048-9058.
    27. Bachman KE, Rountree MR, and Baylin SB. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 2001;276:32282-32287.
    28. Okano M, Xie S, and Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998;19:219-220.
    29. Okano M, Bell DW, Haber DA, and Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-257.
    30. Gowher H and Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 2002;277:20409-20414.
    31. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999;402:187-191.
    32. Chedin F, Lieber MR, and Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 2002;99:16916-16921.
    33. Chen ZX, Mann JR, Hsieh CL, Riggs AD, and Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 2005;95:902-917.
    34. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, and Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997;277:1996-2000.
    35. Knox JD, Araujo FD, Bigey P, Slack AD, Price GB, Zannis-Hadjopoulos M, et al. Inhibition of DNA methyltransferase inhibits DNA replication. J Biol Chem 2000;275:17986-17990.
    36. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, and Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000;25:338-342.
    37. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, and Robertson KD. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 2004;32:598-610.
    38. Geiman TM, Sankpal UT, Robertson AK, Zhao Y, and Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 2004;318:544-555.
    39. Kim GD, Ni J, Kelesoglu N, Roberts RJ, and Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. Embo J 2002;21:4183-4195.
    40. Li E, Bestor TH, and Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992;69:915-926.
    41. Beard C, Li E, and Jaenisch R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 1995;9:2325-2334.
    42. Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, and Minna JD. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 2004;64:3137-3143.
    43. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003;33:61-65.
    44. Okano M and Li E. Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr 2002;132:2462S-2465S.
    45. Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 2005;280:17986-17991.
    46. Chen T, Ueda Y, Dodge JE, Wang Z, and Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003;23:5594-5605.
    47. Chen T, Ueda Y, Dodge JE, Wang Z, and Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003;23:5594-5605.
    48. Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res 2003;63:6110-6115.
    49. Girault I, Tozlu S, Lidereau R, and Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 2003;9:4415-4422.
    50. Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, Ishii H, et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 2003;105:527-532.
    51. Patra SK, Patra A, Zhao H, and Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 2002;33:163-171.
    52. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, and Laird PW. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 1999;59:2302-2306.
    53. Choi MS, Shim YH, Hwa JY, Lee SK, Ro JY, Kim JS, et al. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol 2003;34:11-17.
    54. De Marzo AM, Marchi VL, Yang ES, Veeraswamy R, Lin X, and Nelson WG. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 1999;59:3855-3860.
    55. Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 2004;164:689-699.
    56. Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, and Hirohashi S. DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer 2001;91:205-212.
    57. Nakagawa T, Kanai Y, Saito Y, Kitamura T, Kakizoe T, and Hirohashi S. Increased DNA methyltransferase 1 protein expression in human transitional cell carcinoma of the bladder. J Urol 2003;170:2463-2466.
    58. Lin TS, Lee H, Chen RA, Ho ML, Lin CY, Chen YH, et al. An association of DNMT3b protein expression with P16INK4a promoter hypermethylation in non-smoking female lung cancer with human papillomavirus infection. Cancer Lett 2005;226:77-84.
    59. Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 2003;111:887-895.
    60. Hsu HS, Wang YC, Tseng RC, Chang JW, Chen JT, Shih CM, et al. 5' cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin Cancer Res 2004;10:4734-4741.
    61. Chen JT, Chen YC, Chen CY, and Wang YC. Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer 2001;31:163-170.
    62. Wang YC, Hsu HS, Chen TP, and Chen JT. Molecular diagnostic markers for lung cancer in sputum and plasma. Ann N Y Acad Sci 2006;1075:179-184.
    63. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001;97:1172-1179.
    64. Virmani AK, Rathi A, Zochbauer-Muller S, Sacchi N, Fukuyama Y, Bryant D, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 2000;92:1303-1307.
    65. Kim DH, Nelson HH, Wiencke JK, Zheng S, Christiani DC, Wain JC, et al. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 2001;61:3419-3424.
    66. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002;416:552-556.
    67. Ghoshal K, Datta J, Majumder S, Bai S, Dong X, Parthun M, et al. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol. Cell. Biol. 2002;22:8302-8319.
    68. Kimura H and Shiota K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J. Biol. Chem. 2003;278:4806-4812.
    69. Lin X and Nelson WG. Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells. Cancer Res. 2003;63:498-504.
    70. Zochbauer-Muller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, et al. 5' CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 2001;61:3581-3585.
    71. Kim MY, Song KS, Park GH, Chang SH, Kim HW, Park JH, et al. B6C3F1 mice exposed to ozone with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and/or dibutyl phthalate showed toxicities through alterations of NF-kappaB, AP-1, Nrf2, and osteopontin. J. Vet. Sci. 2004;5:131-137.
    72. Ho YS, Chen CH, Wang YJ, Pestell RG, Albanese C, Chen RJ, et al. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFkappaB activation and cyclin D1 up-regulation. Toxicol. Appl. Pharmacol. 2005;205:133-148.
    73. Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 2005;26:1182-1195.
    74. Rouleau J, MacLeod AR, and Szyf M. Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J. Biol. Chem. 1995;270:1595-1601.
    75. Bakin AV and Curran T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 1999;283:387-390.
    76. Bigey P, Ramchandani S, Theberge J, Araujo FD, and Szyf M. Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 2000;242:407-418.
    77. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, and Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 2001;33:561-568.
    78. Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y, Chen CL, et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 2006;66:11668-11676.
    79. Kishikawa S, Murata T, Kimura H, Shiota K, and Yokoyama KK. Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem 2002;269:2961-2970.
    80. Jinawath A, Miyake S, Yanagisawa Y, Akiyama Y, and Yuasa Y. Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins. Biochem J 2005;385:557-564.
    81. Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003;48:746-756.
    82. Lu R, Wang X, Chen ZF, Sun DF, Tian XQ, and Fang JY. Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. J Biol Chem 2007;282:12249-12259.
    83. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194-1210.
    84. Askari MD, Tsao MS, and Schuller HM. The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through beta-adrenergic transactivation of EGF receptors. J Cancer Res Clin Oncol 2005;131:639-648.
    85. Laag E, Majidi M, Cekanova M, Masi T, Takahashi T, and Schuller HM. NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer 2006;119:1547-1552.
    86. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003;111:81-90.
    87. Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, et al. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 2006;27:112-116.
    88. Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J, et al. Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 2003;63:3743-3746.
    89. Kim JS, Kim H, Shim YM, Han J, Park J, and Kim DH. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis 2004;25:2165-2171.
    90. Hutt JA, Vuillemenot BR, Barr EB, Grimes MJ, Hahn FF, Hobbs CH, et al. Life-span inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways. Carcinogenesis 2005;26:1999-2009.
    91. Vuillemenot BR, Hutt JA, and Belinsky SA. Gene promoter hypermethylation in mouse lung tumors. Mol Cancer Res 2006;4:267-273.
    92. Pulling LC, Vuillemenot BR, Hutt JA, Devereux TR, and Belinsky SA. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 2004;64:3844-3848.
    93. Guimaraes DP and Hainaut P. TP53: a key gene in human cancer. Biochimie 2002;84:83-93.
    94. Sigal A and Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 2000;60:6788-6793.
    95. Kim E and Deppert W. Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem 2004;93:878-886.
    96. Cadwell C and Zambetti GP. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 2001;277:15-30.
    97. Iwakuma T, Lozano G, and Flores ER. Li-Fraumeni syndrome: a p53 family affair. Cell Cycle 2005;4:865-867. Epub 2005 Jul 2004.
    98. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323-331.
    99. Cho Y, Gorina S, Jeffrey PD, and Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994;265:346-355.
    100. Brooks CL and Gu W. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 2004;3:895-899.
    101. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 2003;100:10794-10799.
    102. Huang CL, Yokomise H, and Miyatake A. Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol 2007;3:83-93.
    103. Wang YC, Lin RK, Tan YH, Chen JT, and Chen CY. Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol 2005;23:154-164.
    104. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, and Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A 2004;101:2259-2264.
    105. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149-159.
    106. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, and Gudkov AV. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 1998;391:295-298.
    107. Hoffman WH, Biade S, Zilfou JT, Chen J, and Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002;277:3247-3257.
    108. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 2002;21:2613-2622.
    109. Morris GF, Bischoff JR, and Mathews MB. Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53. Proc Natl Acad Sci U S A 1996;93:895-899.
    110. Tsutsumi-Ishii Y, Tadokoro K, Hanaoka F, and Tsuchida N. Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 1995;6:1-8.
    111. Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, et al. Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 2000;275:11327-11332.
    112. Werner H, Karnieli E, Rauscher FJ, and LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A 1996;93:8318-8323.
    113. Sheikh MS, Carrier F, Johnson AC, Ogdon SE, and Fornace AJ, Jr. Identification of an additional p53-responsive site in the human epidermal growth factor receptor gene promotor. Oncogene 1997;15:1095-1101.
    114. Peterson EJ, Bogler O, and Taylor SM. p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res 2003;63:6579-6582.
    115. Giacinti C and Giordano A. RB and cell cycle progression. Oncogene 2006;25:5220-5227.
    116. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998;12:2245-2262.
    117. Wikman H and Kettunen E. Regulation of the G1/S phase of the cell cycle and alterations in the RB pathway in human lung cancer. Expert Rev Anticancer Ther 2006;6:515-530.
    118. Liu H, Dibling B, Spike B, Dirlam A, and Macleod K. New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 2004;14:55-64.
    119. Tseng RC, Chang JW, Hsien FJ, Chang YH, Hsiao CF, Chen JT, et al. Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 2005;117:241-247.
    120. Trouche D, Le Chalony C, Muchardt C, Yaniv M, and Kouzarides T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci U S A 1997;94:11268-11273.
    121. Siddiqui H, Fox SR, Gunawardena RW, and Knudsen ES. Loss of RB compromises specific heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol 2007;211:131-137.
    122. Fuks F, Burgers WA, Godin N, Kasai M, and Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. Embo J 2001;20:2536-2544.
    123. McCabe MT, Davis JN, and Day ML. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 2005;65:3624-3632.
    124. Kimura H, Nakamura T, Ogawa T, Tanaka S, and Shiota K. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 2003;31:3101-3113.
    125. Sanchez-Carbayo M, Socci ND, Charytonowicz E, Lu M, Prystowsky M, Childs G, et al. Molecular Profiling of Bladder Cancer Using cDNA Microarrays: Defining Histogenesis and Biological Phenotypes. Cancer Res 2002;62:6973-6980.
    126. Wang YC, Chen CY, Chen SK, Cherng SH, Ho WL, and Lee H. High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan. Cancer Res 1998;58:328-333.
    127. Fogal V, Hsieh JK, Royer C, Zhong S, and Lu X. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. Embo J 2005;24:2768-2782.
    128. Innocente SA and Lee JM. p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett 2005;579:1001-1007.
    129. Zhan M, Yu D, Liu J, Glazer RI, Hannay J, and Pollock RE. Transcriptional repression of protein kinase Calpha via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation. J Biol Chem 2005;280:4825-4833.
    130. Sengupta S, Shimamoto A, Koshiji M, Pedeux R, Rusin M, Spillare EA, et al. Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene 2005;24:1738-1748.
    131. Esteve PO, Chin HG, and Pradhan S. Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J Biol Chem 2007;282:2615-2625.
    132. Peart MJ and Prives C. Mutant p53 gain of function: the NF-Y connection. Cancer Cell 2006;10:173-174.
    133. Wang YA, Kamarova Y, Shen KC, Jiang Z, Hahn MJ, Wang Y, et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther 2005;4:1138-1143.
    134. Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, and Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res 2001;61:7110-7117.
    135. E L, M M, M C, T M, T T, and H MS. NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer 2006;119:1547-1552.
    136. Hellebrekers DM, Griffioen AW, and van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 2007;1775:76-91.
    137. Juttermann R, Li E, and Jaenisch R. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 1994;91:11797-11801.
    138. Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005;65:6305-6311.
    139. Villar-Garea A, Fraga MF, Espada J, and Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003;63:4984-4989.
    140. Lee WJ, Shim JY, and Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005;68:1018-1030.
    141. Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW, et al. Phase I trial of continuous infusion 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol 2003;51:231-239.
    142. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103:1635-1640.
    143. Esteller M. Dormant hypermethylated tumour suppressor genes: questions and answers. J Pathol 2005;205:172-180.
    144. Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 1978;21:204-208.
    145. Winquist E, Knox J, Ayoub JP, Wood L, Wainman N, Reid GK, et al. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 2006;24:159-167.
    146. Ming LJ. Structure and function of "metalloantibiotics". Med Res Rev 2003;23:697-762.
    147. Carpenter ML, Cassidy SA, and Fox KR. Interaction of mithramycin with isolated GC and CG sites. J Mol Recognit 1994;7:189-197.
    148. Fox KR and Howarth NR. Investigations into the sequence-selective binding of mithramycin and related ligands to DNA. Nucleic Acids Res 1985;13:8695-8714.
    149. Hadjipavlou AG, Gaitanis LN, Katonis PG, and Lander P. Paget's disease of the spine and its management. Eur Spine J 2001;10:370-384.
    150. Koh LK. The diagnosis and management of hypercalcaemia. Ann Acad Med Singapore 2003;32:129-139.
    151. Kennedy BJ and Torkelson JL. Long-term follow-up of stage III testicular carcinoma treated with mithramycin (plicamycin). Med Pediatr Oncol 1995;24:327-328.
    152. Koller CA and Miller DM. Preliminary observations on the therapy of the myeloid blast phase of chronic granulocytic leukemia with plicamycin and hydroxyurea. N Engl J Med 1986;315:1433-1438.
    153. Duverger V, Murphy AM, Sheehan D, England K, Cotter TG, Hayes I, et al. The anticancer drug mithramycin A sensitises tumour cells to apoptosis induced by tumour necrosis factor (TNF). Br J Cancer 2004;90:2025-2031.
    154. Tagashira M, Kitagawa T, Isonishi S, Okamoto A, Ochiai K, and Ohtake Y. Mithramycin represses MDR1 gene expression in vitro, modulating multidrug resistance. Biol Pharm Bull 2000;23:926-929.
    155. Remsing LL, Bahadori HR, Carbone GM, McGuffie EM, Catapano CV, and Rohr J. Inhibition of c-src transcription by mithramycin: structure-activity relationships of biosynthetically produced mithramycin analogues using the c-src promoter as target. Biochemistry 2003;42:8313-8324.
    156. Herman JG, Graff JR, Myohanen S, Nelkin BD, and Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996;93:9821-9826.
    157. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, et al. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 2002;62:5874-5880.
    158. Darnton SJ, Hardie LJ, Muc RS, Wild CP, and Casson AG. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Int J Cancer 2005;115:351-358.
    159. Siegwart JT, Jr. and Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci 2005;46:3484-3492.
    160. McGinnis S and Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004;32:W20-25.
    161. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003;31:3497-3500.
    162. Morris AL, MacArthur MW, Hutchinson EG, and Thornton JM. Stereochemical quality of protein structure coordinates. Proteins 1992;12:345-364.
    163. Werbowetski-Ogilvie TE, Seyed Sadr M, Jabado N, Angers-Loustau A, Agar NY, Wu J, et al. Inhibition of medulloblastoma cell invasion by Slit. Oncogene 2006;25:5103-5112.
    164. Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Papritz M, Hattenhorst UE, et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 2005;41:1223-1236.
    165. Koutsodontis G and Kardassis D. Inhibition of p53-mediated transcriptional responses by mithramycin A. Oncogene 2004;23:9190-9200.
    166. Faraldo ML, Rodrigo I, Behrens J, Birchmeier W, and Cano A. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinog 1997;20:33-47.
    167. Miyoshi N, Naniwa K, Kumagai T, Uchida K, Osawa T, and Nakamura Y. Alpha-tocopherol-mediated caspase-3 up-regulation enhances susceptibility to apoptotic stimuli. Biochem Biophys Res Commun 2005;334:466-473.
    168. Lin RK, Hsu HS, Chang JW, Chen CY, Chen JT, and Wang YC. Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer 2007;55:205-213.
    169. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, et al. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 2005;25:4727-4741.
    170. Li E, Bestor TH, and Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992;69:915-926.
    171. Chang HC, Cho CY, and Hung WC. Silencing of the Metastasis Suppressor RECK by RAS Oncogene Is Mediated by DNA Methyltransferase 3b-Induced Promoter Methylation. Cancer Res 2006;66:8413-8420.
    172. Nagai M, Nakamura A, Makino R, and Mitamura K. Expression of DNA (5-cytosin)-methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol Res 2003;26:186-191.
    173. Li S, Chiang TC, Richard-Davis G, Barrett JC, and McLachlan JA. DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol 2003;90:123-130.
    174. Preuss U, Kreutzfeld R, and Scheidtmann KH. Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int J Cancer 2000;88:162-171.
    175. Tang HY, Zhao K, Pizzolato JF, Fonarev M, Langer JC, and Manfredi JJ. Constitutive expression of the cyclin-dependent kinase inhibitor p21 is transcriptionally regulated by the tumor suppressor protein p53. J Biol Chem 1998;273:29156-29163.
    176. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, and Zambetti GP. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 1998;18:3735-3743.
    177. Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R, et al. p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem 2004;279:50976-50985.
    178. Lin J, Teresky AK, and Levine AJ. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 1995;10:2387-2390.
    179. Zhang Y, Wang JS, Chen LL, Cheng XK, Heng FY, Wu NH, et al. Repression of hsp90beta gene by p53 in UV irradiation-induced apoptosis of Jurkat cells. J Biol Chem 2004;279:42545-42551.
    180. Lyko F and Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005;97:1498-1506.

    無法下載圖示 本全文未授權公開
    QR CODE