研究生: |
謝政穎 Hsieh, Cheng-Yin |
---|---|
論文名稱: |
魔術尺寸硒化鎘奈米團簇物及二維結構之合成、鑑定與應用 Syntheses, Characterizations and Applications of CdSe Magic-Size Nanoclusters and 2D Nanosheets |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 魔術尺寸奈米團簇物 、二維結構硒化鎘 、X光小角散射 、水分解產氫 |
英文關鍵詞: | magic-size nanoclusters, 2D CdSe nanosheets, small-angle X-ray scattering, water splitting |
DOI URL: | https://doi.org/10.6345/NTNU202203542 |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討低維度下奈米團簇物及二維結構硒化鎘之合成、結構及應用。在室溫下合成魔術尺寸的 (CdSe)13奈米團簇物,經由油胺進行剝離後,並以X光小角散射技術分析其形貌及大小,再藉由理論計算推測最穩定之構型加以佐證。在相同的合成條件下,進一步改變配位基(乙二胺、己二胺),可合成出具有高結晶性之二維結構硒化鎘,並在紫外光下可催化水分解產氫。透過穿透式電子顯微鏡、掃描式電子顯微鏡、原子力顯微鏡、紫外-可見光光譜儀、X光粉末繞射儀、X光吸收光譜、固態核磁共振儀、小角度X光散射等儀器之鑑定,理解魔術尺寸奈米團簇物與二維結構硒化鎘形貌結構、光學性質、晶相結構、化學環境、原子位置等重要特性。
Here we introduce syntheses, structures and applications of low-dimensional CdSe hybrid materials, including magic-size nanoclusters and 2D nanosheets. As-made (CdSe)13 nanoclusters were exfoliated in oleylamine solution in which their morphology and sizes were rationally determined by small-angle X-ray scattering, suggesting few isomeric structures of having diverse electronic transitions revealed in DFT calculations. In similar synthetic conditions, 2D CdSe nanosheets were recrystallized in the presence of 1,2-ethylenediamine and 1,6-hexanediamine, capable of catalyzing hydrogen evolution via water splitting. Characteristic morphologies, optical properties, crystal structures, chemical environments, atomic positions in low-dimensional CdSe hybrid materials were examined by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, UV-visible spectroscopy, X-ray powder diffraction, small-angle X-ray scattering, solid-state nuclear magnetic resonance, extended X-ray absorption fine structure technique.
(1) Lohse, S. E.; Murphy, C. J. J. Am. Chem. Soc. 2012, 134, 15607.
(2) Murphy, C. J.; Coffer, J. L. Appl. Spectrosc. 2002, 56, 16A.
(3) Smith, A. M.; Nie, S. Acc. Chem. Res. 2010, 43, 190.
(4) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
(5) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737.
(6) Hetsch, F.; Xu, X.; Wang, H.; Kershaw, S. V.; Rogach, A. L. J. Phys. Chem. Lett 2011, 2, 1879.
(7) Nann, T.; Skinner, W. M. ACS Nano 2011, 5, 5291.
(8) Jimenez de Aberasturi, D.; Montenegro, J.-M.; Ruiz de Larramendi, I.; Rojo, T.; Klar, T. A.; Alvarez-Puebla, R.; Liz-Marzán, L. M.; Parak, W. J. Chem. Mater. 2012, 24, 738.
(9) Yin, S.; Zhang, Y.; Kong, J.; Zou, C.; Li, C. M.; Lu, X.; Ma, J.; Boey, F. Y. C.; Chen, X. ACS Nano 2011, 5, 3831.
(10) Hildebrandt, N. ACS Nano 2011, 5, 5286.
(11) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat Mater 2005, 4, 435.
(12) Harris, C.; Kamat, P. V. ACS Nano 2009, 3, 682.
(13) Harris, C.; Kamat, P. V. ACS Nano 2010, 4, 7321.
(14) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett 2010, 1, 48.
(15) Ruberu, T. P. A.; Nelson, N. C.; Slowing, I. I.; Vela, J. J. Phys. Chem. Lett 2012, 3, 2798.
(16) Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U. J. Am. Chem. Soc. 2001, 123, 2354.
(17) Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y. Nat Mater 2004, 3, 99.
(18) Ouyang, J.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. J. Phys. Chem. C 2008, 112, 13805.
(19) Riehle, F. S.; Bienert, R.; Thomann, R.; Urban, G. A.; Krüger, M. Nano Lett. 2009, 9, 514.
(20) Kurotobi, K.; Murata, Y. Science 2011, 333, 613.
(21) Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M. J. Phys. Chem. C 2011, 115, 16782.
(22) Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.
(23) Nguyen, K. A.; Pachter, R.; Day, P. N. J. Chem.Theory Comput. 2013, 9, 3581.
(24) Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M. PCCP 2013, 15, 10996.
(25) Tamargo, M. C.; Lin, W.; Guo, S. P.; Guo, Y.; Luo, Y.; Chen, Y. C. J. Cryst. Growth 2000, 214–215, 1058.
(26) Hernández-Calderón, I.; García-Rocha, M.; Díaz-Arencibia, P. physica status solidi (b) 2004, 241, 558.
(27) Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A. J. Am. Chem. Soc. 2003, 125, 7049.
(28) Lu, J.; Wei, S.; Yu, W.; Zhang, H.; Qian, Y. Chem. Mater. 2005, 17, 1698.
(29) Huang, X.; Heulings; Le, V.; Li, J. Chem. Mater. 2001, 13, 3754.
(30) Huang, X.; Li, J.; Fu, H. J. Am. Chem. Soc. 2000, 122, 8789.
(31) Heulings; Huang, X.; Li, J.; Yuen, T.; Lin, C. L. Nano Lett. 2001, 1, 521.
(32) Lu, J.; Wei, S.; Peng, Y.; Yu, W.; Qian, Y. J. Phys. Chem. B 2003, 107, 3427.
(33) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
(34) Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; Moore, T. A.; Moser, C. C.; Nocera, D. G.; Nozik, A. J.; Ort, D. R.; Parson, W. W.; Prince, R. C.; Sayre, R. T. Science 2011, 332, 805.
(35) Gray, H. B. Nat Chem 2009, 1, 7.
(36) Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y.; Choi, B. L.; Kuk, Y.; Kim, J. M.; Kim, K. Nat Photon 2011, 5, 176.
(37) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat Photon 2012, 6, 511.
(38) Meyer, T. J. Nature 2008, 451, 778.
(39) Osterloh, F. E. Chem. Mater. 2008, 20, 35.
(40) Darwent, J. R. J. Chem. Soc., Faraday Trans. 2 1981, 77, 1703.
(41) Mills, A.; Porter, G. J. Chem. Soc., Faraday Trans. 1 1982, 78, 3659.
(42) Buehler, N.; Meier, K.; Reber, J. F. J. Phys. Chem. 1984, 88, 3261.
(43) Darwent, J. R.; Porter, G. J. Chem. Soc., Chem. Commun. 1981, 145.
(44) Reber, J. F.; Meier, K. J. Phys. Chem. 1984, 88, 5903.
(45) Andrew Frame, F.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E. Chem. Commun. 2008, 2206.
(46) Compton, O. C.; Carroll, E. C.; Kim, J. Y.; Larsen, D. S.; Osterloh, F. E. J. Phys. Chem. C 2007, 111, 14589.
(47) Carroll, E. C.; Compton, O. C.; Madsen, D.; Osterloh, F. E.; Larsen, D. S. J. Phys. Chem. C 2008, 112, 2394.
(48) Tinkham, M.; Ferrell, R. A. Phys. Rev. Lett. 1959, 2, 331.
(49) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Phys. Chem. 1973, 59, 569.
(50) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1959, 183, 1802.
(51) Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E. Inorg. Chem. 2013, 52, 2933.
(52) Wang, Y.; Liu, Y.-H.; Zhang, Y.; Wang, F.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Angew. Chem. Int. Ed. 2012, 51, 6154.
(53) Berrettini, M. G.; Braun, G.; Hu, J. G.; Strouse, G. F. J. Am. Chem. Soc. 2004, 126, 7063.