簡易檢索 / 詳目顯示

研究生: 蔡宗佑
Tsai, Tsung-Yu
論文名稱: 電動載具汰役電池之性能分析與變動負載驗證
Performance Analysis and Variable Load Verification of Retired Batteries for Electric Vehicles
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 汰役電池混合動力脈衝能力特性電量狀態健康狀態等效直流內阻抗
英文關鍵詞: Retired Batteries, Hybrid Pulse Power Characteristic, State Of Charge, State Of Healt, Direct Current Internal Resistance
DOI URL: http://doi.org/10.6345/NTNU202001081
論文種類: 學術論文
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用汰役電池單體之篩選、不同壽命之下電池模塊放電特性、ECE-40與混合動力脈衝能力特性(Hybrid Pulse Power Characteristic,HPPC)等混合運用,以及ECE-40工況實測各群電池模塊;藉由電池單體測試、電池模塊測試,方能提出如何校正電量狀態( State Of Charge,SOC)與重新判斷健康狀態(State Of Health,SOH)等方法。本文探討30Ah、40Ah及50Ah等3組電池模塊,由模擬混合動態測試方法得知,電池模塊充飽電狀態下,即時瞬間等效直流內阻抗為30Ah:0.2694Ω,40Ah:0.1474Ω,50Ah:0.0904Ω,明顯可看出相互差異性,可由此方法來判斷SOH;SOC依然使用庫倫積分法來計算電量,但另外還參考不同壽命、電量之等效直流內阻抗,來準確校正SOC,校正方式可於電動機車重新起動狀態下,再度判斷電池模塊殘餘電量。由混合動態測試之等效直流內阻抗與驗證實際工況之等效直流內阻抗相互對應,顯然有相同趨勢;此時也可依放電電流來評估剩餘里程數,分別為30Ah電池模塊實際可放電電量約為8.84Ah、可行駛總公里數約20.17km;40Ah電池模塊實際可放電電量約為19.19Ah、可行駛總公里數約45.46km;50Ah電池模塊實際可放電電量約為40.86Ah、可行駛總公里數約96.78km。未來電池回收廠、車廠等公司可參考使用本文測試方法來確保再次轉用汰役電池之可靠度。

    This study used a combination of screening of retired battery cells, discharge characteristics of battery modules with different lifespans, ECE-40, HPPC, as well as the ECE-40 driving cycle, in the actual testing of each group of battery modules. Methods for correcting the state of charge (SOC), reassessing the state of health (SOH), etc., during battery cell and battery module tests, can be proposed.This study also investigated three groups of battery modules, consisting of battery ratings of 30 Ah, 40 Ah, and 50 Ah. It can be seen from the simulated hybrid dynamic testing method that when the battery modules were fully charged, the immediate instantaneous equivalent direct current (DC) internal impedances were 0.2694 Ω, 0.1474 Ω, and 0.0904 Ω for the 30 Ah, 40 Ah, and 50 Ah battery modules, respectively, and obvious differences were demonstrated; the SOH could be assessed via this method, while the Coulomb integral method was still used to calculate the charge for the SOC in this study. However, the equivalent DC internal impedances of battery modules with different lifespans and capacities were also taken into account for accurate correction of the SOC.This correction method could reassess the residual charge in the battery module during the restarting phase of an electric motorcycle.The equivalent DC internal impedances in hybrid dynamic testing corresponded to those under verified and actual driving cycles and clearly exhibited the same trends.The remaining driving range could also be evaluated based on the discharge current.The actual dischargeable capacity of the 30 Ah battery modules was about 8.84 Ah; the total mileage that could be driven was approximately 20.17 km.The actual dischargeable capacity of the 40 Ah battery modules was approximately 19.19 Ah and the total mileage that could be driven was about 45.46 km. The actual dischargeable capacity of the 50 Ah battery modules was approximately 40.86 Ah and the total mileage that could be driven was about 96.78 km. In the future, companies such as battery recycling plants and car manufacturers can refer to the testing methods employed in this study to ensure the reliability of reconverted retired batteries.

    謝誌 i 摘要 ii Abstract iii 目次 v 表次 viii 圖次 ix 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 3 1.5 文獻回顧 5 1.6 論文架構 8 第二章 鋰電池特性及整車判斷方法 9 2.1 鋰電池基礎理論 9 2.1.1 鋰電池構造與基本特性 9 2.2 電池等效模型 12 2.2.1 理想模型 13 2.2.2 線性模型 13 2.2.3 戴維寧等效模型 14 2.3 電池充電技術 15 2.3.1 定電流充電法 15 2.3.2 定電壓充電法 16 2.3.3 定電流轉定電壓充電法 16 2.3.4 脈衝充電法 17 2.4 電池電量估測技術 18 2.4.1 開路電壓量測法 18 2.4.2 有載電壓量測法 19 2.4.3 放電測試法 19 2.4.4 庫侖電量累積法 19 2.4.5 電解液濃度量測法 20 2.4.6 內阻測量法 20 2.5 電池健康狀態估測 20 2.6 電動機車基礎理論 21 2.7 HPPC 標準測試規範 22 第三章 汰役鋰電池匹配暨動態模擬方法 25 3.1 篩檢汰役磷酸鋰鐵電池單體 26 3.2 電池模塊量測與擷取行車型態 31 3.2.1 電池模塊可放電電量 31 3.2.2 電路板設計與量測設備介紹 34 3.2.3 校正量測設備 37 3.2.4 擷取行車型態 41 3.3 模擬混合動態波型與驗證行車型態 45 3.3.1 模擬ECE-40 與HPPC 之混合波型 45 3.3.2 驗證行車型態 49 第四章 模擬結果與討論 51 4.1 電池模塊性能結果 51 4.2 動力平台擷取結果 53 4.3 電池模塊混合動態測試結果 55 4.4 驗證行車型態結果 58 第五章 結論與未來工作 67 5.1 結論 67 5.2 未來工作與建議 69 參考文獻 71 符號彙整 76

    [1]經濟部,“107車輛油耗指南”,2019。
    [2]傅志堅,“氧化鋰鐵磷電池參數建立與殘量估測之研究”,國立台灣科技大學電機工程系,碩士論文,2013。
    [3]黃裕煒、吳志宏、陳昌錦,“應用磷酸鋰鐵電池與超級電容並聯供電之研究”,中華民國第十七屆車輛工程學術研討會,2012。
    [4]Sack, T. T., Tice, J. C., & Reynolds, R. (2001, Sept.). Segmented battery charger for high energy 28V lithium ion battery. IEEE Aerospace and Electronic Systems Magazine, 16(9), pp.15-18.
    [5]陳敏睿,“汰換之電動車電池再利用之直流微電網運轉”,國立中山大學電機工程系,碩士論文,2013。
    [6]Ecker, M., Gerschler, J. B., & Vogel J., et al. (2012, Oct.). Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. J. Power Sources, 215(1), pp.248-257.
    [7]Adnan, N., Tarik, T., & Thomas, S. G. et al. (2013, Oct.). Health diagnos-is and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources, 239(1), pp.680-688.
    [8]Erdinc, O., Vural, B., & Uzunoglu, M. (2009, June). A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. International Conference on Clean Electrical Power, Capri, Italy.
    [9]周志勳,“電動車汰役電池檢測技術與循環經濟應用商機”,承德科技,2017。
    [10]Guenther, C., Schott, B., & Hennings, W. et al. (2013, Oct.). Model-based investigation of electric vehicle battery aging by means of vehicle-to-grid scenario simulations. J. Power Sources,239 (1), pp. 604-610.
    [11]厲文誠,“移動式載具動態功能狀態即時整合服務模式之研究”,科專計畫,2017。
    [12]陳敏睿,“汰換之電動車電池再利用之直流微電網運轉”,國立中山大學電機工程系,碩士論文,2013。
    [13]Piller, S., Perrin, M., & Jossen, A. (2001, June). Methods for state-of-charge determination andtheir applications. J. Power Sources, 96(1), pp. 113-120.
    [14]陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程系,碩士論文,2007。
    [15]Wu, G., Lu, R., & Zhu, C., et al. (2010, Sept.). An Improved Ampere-hour Method For Battery Stateof Charge Estimation Based on Temperature,Coulomb Efficiency Model and Capacity Loss Model. IEEE Vehicle Power and Propulsion Conference, Lille, France.
    [16]Xu, J., Gao, M., & He, Z., et al. (2009, Nov.). DesignandStudy on the State of Charge Estimation for Lithium-ion Battery Packin Electric Vehicle. International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China.
    [17]吳佳祥,“基於安時法的磷酸鋰鐵電池荷電狀態校正”,山東交通學院學報第23卷,第三期,2015年9月。
    [18]Cho, Y. K., Jeong, Y. M., & Ahn, J. H., et al. (2014, Oct.). A New SOC Estimation Algorithm withoutIntegrated Errorusing DCIR Repetitive Calculation. International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China.
    [19]Jespersen, J. L., Tønnesen1, A. E., & Nørregaard, K., et al. (2009, Mar.). Capacity Measurements of Li-Ion Batteries using AC Impedance Spectroscopy. World Electric Vehicle Journal, 3(1), pp. 127-133.
    [20]Lu, L., Han, X., & Li, J., et al. (2013, Mar.). A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources, 226, pp. 272-288.
    [21]柯賢文,“鋰電池”,科學發展,482期,2013年2月。
    [22]柯明揚,“磷酸鋰鐵電池組模型建立與充電狀態估測”,明志科技大學電機工程系,碩士論文,2017。
    [23]厲文誠,“動力電池健康狀態之特性診測”,2014。
    [24]Schmidt, J. P., Chrobak, T., & Ender, M., et al. (2011, June). Studies on LiFePO4 as cathode material using impedance spectroscopy. J. Power Sources, 196 (12), pp. 5342–5348.
    [25]雷永泉,“新能源材料”,2004年11月30日初版。
    [26]呂學隆,“鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展”,電子材料智庫,2011年9月。
    [27]Hussein, A. A. H. & Batarseh, I. (2011, July). An overview of generic battery models. IEEE Power and Energy Society General Meeting, Detroit, Michigan.
    [28]林憶全,“汰役電池再利用之充放電策略測試”,國立中山大學電機工程學系,碩士論文,2018。
    [29]Hua, C. C., & Lin, M. Y. (2000, Dec.). A study of charging control of lead-acid battery for electric vehicles. IEEE International Symposium on Industrial Electronics, Cholula, Puebla, Mexico.
    [30]周承練,“使用內電動勢法於磷酸鐵鋰電池之電量估測”,國立成功大學,碩士論文,2009。
    [31]黃昭明,“用於儲能系統之汰役電池充放電策略”,國立中山大學電機工程學系,碩士論文,2017。
    [32]許家興,“電動車電池類型與電池基礎介紹”,財團法人車輛研究測試中心,民國98年10月。
    [33]Watrin, N., Blunier, B., & Miraoui, A. (2012, June). Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation. IEEE Transportation Electrification Conference, Dearborn, Michigan.
    [34]Chang, W. Y. (2013, July). The state of charge estimating methods for battery: A review. Retrieved from https://www.hindawi.com/journals/isrn/2013/953792/.
    [35]張永昌,“鉛酸電池電量預測及壽命分析之研究”,國立彰化師範大學,碩士論文,2003。
    [36]王致凱,“具電池電量與健康狀態線上校準之電池電源系統”,國立中山大學電機工程學系,碩士論文,2016。
    [37]Chen, Z., Sun, H., & Dong, G., et al. (2019, Feb.). Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries. J. Power Sources, 414 (1), pp. 158-166.
    [38]梁翊民,“磷酸鋰鐵電池之線上健康狀態估測”,國立中山大學電機工程學系,碩士論文,2016。
    [39]Eddahech, A., Briat, O., & Bertrand, N., et al. (2012, Nov.). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42 (1), pp. 487-494.
    [40]張晉嘉、李鴻駿、李汯緯、洪翊軒、陳建安、呂有豐,“新型電動巴士與快充系統建模與評估設計”,第十七屆車輛工程學術研討會,南投,2012。
    [41]黃達明、游信義、柯雲龍,應用力學,台科大,2011。
    [42]Idaho National Laboratory. (2010, Sep.). Battery Test Manual for Plug-In Hybrid Electric Vehicles. Revision INL/EXT-07-12536. Retrieved from https://inldigitallibrary.inl.gov/sites/sti/sti/4655291.pdf.
    [43]李汯緯,“空氣/電動混合動力機車系統設計與實作驗證”,國立臺灣師範大學工業教育學系,碩士論文,2014。
    [44]张方亮,“不同放电倍率下的锂电池欧姆内阻测试分析”,电源世界,2016。
    [45]林文衡,严晓,王影,黄碧雄,刘中财,“磷酸铁锂电池表征内阻特性的研究”,电源技術,2019。

    無法下載圖示 電子全文延後公開
    2025/08/10
    QR CODE