研究生: |
陳彥儒 Chen, Yan-Ru |
---|---|
論文名稱: |
組間休息使用不同壓力劑量血流阻斷對蹲舉運動表現之急性影響 Acute effect of different doses of blood flow restriction during rest interval on squat exercise performance |
指導教授: |
何仁育
Ho, Jen-Yu |
口試委員: |
鄭景峰
Cheng, Ching-Feng 陳昀宗 Chen, Yun-Tsung 何仁育 Ho, Jen-Yu |
口試日期: | 2024/01/18 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | KAATSU 、缺血處理 、阻力訓練 、運動表現 、功率輸出 |
英文關鍵詞: | KAATSU, ischemic treatment, resistance training, athletic performance, power output |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400316 |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究旨在探討組間休息使用不同壓力劑量血流阻斷 (blood flow restriction, BFR)對蹲舉運動表現的影響。方法:招募10名具阻力運動經驗,蹲舉運動最大肌力達1.5倍自身體重的健康男性為受試者。受試者須執行5組蹲舉運動 (60%1RM) 反覆3下,組間休息5分鐘,在正式組開始前與組間休息時使用BFR處理 (4.5分鐘BFR + 0.5分鐘血液回流)。受試者先進行控制處理 (CON),隨後依隨機交叉平衡次序,分別進行二種不同壓力劑量BFR的實驗處理:中壓力劑量 (60%AOP) 和高壓力劑量 (90%AOP)。正式實驗過程中,使用彈震式位移系統測量蹲舉運動之功率峰值 (peak power, PP)、平均功率 (mean power, MP)、力量峰值 (peak force, PF)、平均力量 (mean force, MF)、速度峰值 (peak velocity, PV) 和平均速度 (mean velocity, MV),並記錄各處間運動自覺努力程度 (rating of perceived exertion, RPE) 和疼痛程度。結果:PP、MP、PF、MF、PV、MV、RPE在三種處理間沒有顯著差異。然而高壓力劑量 (90%AOP) 於第一組和第二組時疼痛程度顯著高於中壓力劑量 (60%AOP) (p < .05)。結論:組間休息使用不同壓力劑量血流阻斷,無法促進單次蹲舉的運動表現;另外,組間休息使用中或高壓力劑量血流阻斷不會影響蹲舉運動的自覺努力程度。未來應有更多研究探討組間休息使用血流阻斷對生理指標的急性影響,以釐清組間休息使用血流阻斷在阻力運動表現上的影響與機制。
Propose: This study aimed to investigate the effects of different does of blood flow restriction (BFR) applied during rest intervals on squat exercise performance. Methods: Ten healthy male participants with resistance training experience, capable of squatting with a maximum strength equivalent to 1.5 times their body weight, were recruited for the study. Each participant performed 5 sets of squats (60% 1RM) for 3 repetitions, each with a 5-minute rest interval between sets. BFR was applied during the rest intervals and before the start of the first set (4.5 minutes of BFR followed by 0.5 minutes of reperfusion). Participants initially underwent a control treatment (CON), followed by a randomized crossover design to two experimental treatments with different BFR pressures: moderate pressure (60%AOP) and high pressure (90% AOP). During the formal experimental procedure, peak power (PP), mean power (MP), peak force (PF), mean force (MF), peak velocity (PV), and mean velocity (MV) were measured using a linear position transducer and force plate. Additionally, the effects on the rating of perceived exertion (RPE) and pain level assessed by visual analogue scale (VAS) were monitored. Result: There were no significant differences in PP, MP, PF, MF, PV, MV, or RPE among the three treatments. However, pain level was significantly higher for the 90%AOP treatment in the first and second sets compared to 60%AOP (p < .05). Conclusion: The use of different does of blood flow restriction (BFR) during rest intervals could not enhance the performance of a single bout of squat exercise. In addition, the application of moderate or high-pressure BFR during rest intervals could not significantly affect the perceived exertion level in squat exercises. Future research should further investigate the acute effects of BFR applied during rest interval on physiological indicators to elucidate the impact and physiological mechanisms underlying the influence of BFR on resistance exercise performance.
Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearns, C. F., Inoue, K., Koizumi, K., & Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research, 1(1), 6-12. https://doi.org/10.3806/ijktr.1.6
Amarante do Nascimento, M., Cyrino, E., Nakamura, F., Romanzini, M., Pianca, H., & Queiroga, M. (2007). Validation of the Brzycki equation for the estimation of 1-RM in the bench press. Revista Brasileira de Medicina do Esporte, 13, 40e-42e.
Andreas, M., Schmid, A. I., Keilani, M., Doberer, D., Bartko, J., Crevenna, R., Moser, E., & Wolzt, M. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. Journal of Cardiovascular Magnetic Resonance, 13(1), 32. https://doi.org/10.1186/1532-429x-13-32
Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., & Thijssen, D. H. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American Journal of Physiology-Heart and Circulatory Physiology, 303(5), H533-538. https://doi.org/10.1152/ajpheart.00272.2012
Clarkson, M. J., May, A. K., & Warmington, S. A. (2019). Chronic Blood Flow Restriction Exercise Improves Objective Physical Function: A Systematic Review.Clinical Physiology and Functional Imaging, 10, 1058. https://doi.org/10.3389/fphys.2019.01058
Dankel, S. J., Buckner, S. L., Jessee, M. B., Mattocks, K. T., Mouser, J. G., Counts, B. R., Laurentino, G. C., & Loenneke, J. P. (2018). Can blood flow restriction augment muscle activation during high-load training? Clinical Physiology and Functional Imaging, 38(2), 291-295. https://doi.org/10.1111/cpf.12414
Fitschen, P. J., Kistler, B. M., Jeong, J. H., Chung, H. R., Wu, P. T., Walsh, M. J., & Wilund, K. R. (2014). Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training. Clinical Physiology and Functional Imaging, 34(5), 356-363. https://doi.org/https://doi.org/10.1111/cpf.12100
Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., Volpi, E., & Rasmussen, B. B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology (1985), 103(3), 903-910. https://doi.org/10.1152/japplphysiol.00195.2007
Gawel, D., Jarosz, J., Matykiewicz, P., Kaszuba, M., & Trybulski, R. (2021). Acute impact of blood flow restriction during resistance exercise - review.TRENDS in Sport Sciences. https://doi.org/10.23829/TSS.2021.28.2-2
Gepfert, M., Krzysztofik, M., Kostrzewa, M., Jarosz, J., Trybulski, R., Zajac, A., & Wilk, M. (2020). The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. International Journal of Environmental Research and Public Health, 17(13). https://doi.org/10.3390/ijerph17134674
Girard, O., Willis, S. J., Purnelle, M., Scott, B. R., & Millet, G. P. (2019). Separate and combined effects of local and systemic hypoxia in resistance exercise. European Journal of Applied Physiology, 119(10), 2313-2325. https://doi.org/10.1007/s00421-019-04217-3
Gołaś, A., Maszczyk, A., Pietraszewski, P., Wilk, M., Stastny, P., Strońska, K., Studencki, M., & Zając, A. (2018). Muscular activity patterns of female and male athletes during the flat bench press. Biology of Sport, 35(2), 175-179. https://doi.org/10.5114/biolsport.2018.74193
Heller, G. Z., Manuguerra, M., & Chow, R. (2016). How to analyze the Visual Analogue Scale: Myths, truths and clinical relevance. Scandinavian Journal of Pain, 13, 67-75. https://doi.org/10.1016/j.sjpain.2016.06.012
Husmann, F., Mittlmeier, T., Bruhn, S., Zschorlich, V., & Behrens, M. (2018). Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery. Medicine and Science in Sports and Exercise 50(3), 436-446. https://doi.org/10.1249/mss.0000000000001475
Jessee, M. B., Buckner, S. L., Mouser, J. G., Mattocks, K. T., Dankel, S. J., Abe, T., Bell, Z. W., Bentley, J. P., & Loenneke, J. P. (2018). Muscle Adaptations to High-Load Training and Very Low-Load Training With and Without Blood Flow Restriction. Frontiers in Physiology, 9, 1448. https://doi.org/10.3389/fphys.2018.01448
Karabulut, M., Abe, T., Sato, Y., & Bemben, M. G. (2010). The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. European Journal of Applied Physiology, 108(1), 147-155. https://doi.org/10.1007/s00421-009-1204-5
Kim, D., Loenneke, J. P., Ye, X., Bemben, D. A., Beck, T. W., Larson, R. D., & Bemben, M. G. (2017). Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve, 56(6), E126-e133. https://doi.org/10.1002/mus.25626
Kubo, K., Komuro, T., Ishiguro, N., Tsunoda, N., Sato, Y., Ishii, N., Kanehisa, H., & Fukunaga, T. (2006). Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. Journal of Applied Biomechanics, 22(2), 112-119. https://doi.org/10.1123/jab.22.2.112
Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M., Jr., Aihara, A. Y., Fernandes Ada, R., & Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Medical Science Sports Exercise, 44(3), 406-412. https://doi.org/10.1249/MSS.0b013e318233b4bc
Loenneke, J. P., Balapur, A., Thrower, A. D., Barnes, J. T., & Pujol, T. J. (2011). The perceptual responses to occluded exercise. International Journal of Sports Medicine, 32(3), 181-184. https://doi.org/10.1055/s-0030-1268472
Loenneke, J. P., Balapur, A., Thrower, A. D., Barnes, J., & Pujol, T. J. (2012a). Blood flow restriction reduces time to muscular failure. European Journal of Sport Science, 12(3), 238-243. https://doi.org/10.1080/17461391.2010.551420
Loenneke, J. P., Kim, D., Fahs, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., Bemben, D. A., & Bemben, M. G. (2015). The effects of resistance exercise with and without different degrees of blood-flow restriction on perceptual responses. Journal of Sports Sciences 33(14), 1472-1479. https://doi.org/10.1080/02640414.2014.992036
Loenneke, J. P., Thiebaud, R. S., & Abe, T. (2014a). Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scandinavian Journal of Medicine & Science in Sports, 24(6), e415-422. https://doi.org/10.1111/sms.12210
Loenneke, J. P., Thiebaud, R. S., Abe, T., & Bemben, M. G. (2014b). Blood flow restriction pressure recommendations: the hormesis hypothesis. Medical Hypotheses, 82(5), 623-626. https://doi.org/10.1016/j.mehy.2014.02.023
Loenneke, J., Abe, T., Wilson, J., Ugrinowitsch, C., & Bemben, M. (2012b). Blood Flow Restriction: How Does It Work? [Opinion]. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00392
Lowery, R. P., Joy, J. M., Loenneke, J. P., de Souza, E. O., Machado, M., Dudeck, J. E., & Wilson, J. M. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clinical Physiology and Functional Imaging, 34(4), 317-321. https://doi.org/10.1111/cpf.12099
Manini, T. M., & Clark, B. C. (2009). Blood flow restricted exercise and skeletal muscle health. Exercise and Sport Sciences Reviews, 37(2), 78-85. https://doi.org/10.1097/JES.0b013e31819c2e5c
Moritani, T., Sherman, W. M., Shibata, M., Matsumoto, T., & Shinohara, M. (1992). Oxygen availability and motor unit activity in humans. European Journal of Applied Physiology, 64(6), 552-556. https://doi.org/10.1007/bf00843767
Neto, G. R., Novaes, J. S., Salerno, V. P., Gonçalves, M. M., Piazera, B. K. L., Rodrigues-Rodrigues, T., & Cirilo-Sousa, M. S. (2017). Acute Effects of Resistance Exercise With Continuous and Intermittent Blood Flow Restriction on Hemodynamic Measurements and Perceived Exertion. Perceptual and Motor Skills, 124(1), 277-292. https://doi.org/10.1177/0031512516677900
Okita, K., Takada, S., Morita, N., Takahashi, M., Hirabayashi, K., Yokota, T., & Kinugawa, S. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Applied Physiology, Nutrition, and Metabolism, 44(7), 759-764. https://doi.org/10.1139/apnm-2018-0321
Parfitt, G., Evans, H., & Eston, R. (2012). Perceptually regulated training at RPE13 is pleasant and improves physical health. Medicine & Science in Sports & Exercise 44(8), 1613-1618. https://doi.org/10.1249/MSS.0b013e31824d266e
Patterson, S. D., & Brandner, C. R. (2018). The role of blood flow restriction training for applied practitioners: A questionnaire-based survey. Journal of Sports Sciences, 36(2), 123-130. https://doi.org/10.1080/02640414.2017.1284341
Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., Abe, T., Nielsen, J. L., Libardi, C. A., Laurentino, G., Neto, G. R., Brandner, C., Martin-Hernandez, J., & Loenneke, J. (2019). Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety [Review]. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00533
Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187-200. https://doi.org/10.1007/s40279-014-0264-9
Ramis, T. R., Muller, C. H. d. L., Boeno, F. P., Teixeira, B. C., Rech, A., Pompermayer, M. G., Medeiros, N. d. S., Oliveira, Á. R. d., Pinto, R. S., & Ribeiro, J. L. (2020). Effects of Traditional and Vascular Restricted Strength Training Program With Equalized Volume on Isometric and Dynamic Strength, Muscle Thickness, Electromyographic Activity, and Endothelial Function Adaptations in Young Adults. The Journal of Strength & Conditioning Research, 34(3), 689-698. https://doi.org/10.1519/jsc.0000000000002717
Rawska, M., Gepfert, M., Mostowik, A., Krzysztofik, M., Wojdała, G., Lulinska, A., & Wilk, M. (2019). Does blood flow restriction influence the maximal number of repetitions performed during the bench press? A pilot study article details. Baltic Journal of Health and Physical Activity. https://doi.org/10.29359/BJHPA.11.4.02
Schwanbeck, S., Chilibeck, P. D., & Binsted, G. (2009). A comparison of free weight squat to Smith machine squat using electromyography. The Journal of Strength & Conditioning Research, 23(9), 2588-2591. https://doi.org/10.1519/JSC.0b013e3181b1b181
Scott, B. R., Loenneke, J. P., Slattery, K. M., & Dascombe, B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Medicine, 45(3), 313-325. https://doi.org/10.1007/s40279-014-0288-1
Serrano-Ramon, J., Cortell-Tormo, J., Bautista, I., García Jaén, M., & Chulvi-Medrano, I. (2022). Acute effects of different external compression with blood flow restriction on force-velocity profile during squat and bench press exercises [journal article]. Biology of Sport, 209-216. https://doi.org/10.5114/biolsport.2023.112093
Singh, L., Randhawa, P. K., Singh, N., & Jaggi, A. S. (2017). Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. European Journal of Pharmacology, 809, 151-155. https://doi.org/10.1016/j.ejphar.2017.05.033
Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., Takada, S., Takahashi, T., Omokawa, M., Kinugawa, S., & Tsutsui, H. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology (1985), 106(4), 1119-1124. https://doi.org/10.1152/japplphysiol.90368.2008
Sugaya, M., Yasuda, T., Suga, T., Okita, K., & Abe, T. (2011). Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clinical Physiology and Functional Imaging, 31(5), 411-413. https://doi.org/10.1111/j.1475-097X.2011.01033.x
Trybulski, R., Jarosz, J., Krzysztofik, M., Lachowicz, M., Trybek, G., Zajac, A., & Wilk, M. (2022). Ischemia during rest intervals between sets prevents decreases in fatigue during the explosive squat exercise: a randomized, crossover study. Scientific Reports, 12(1), 5922. https://doi.org/10.1038/s41598-022-10022-4
Wang, A., Brothers, R. M., & Hurr, C. (2023). Application of blood flow restriction in hypoxic environment augments muscle deoxygenation without compromising repeated sprint exercise performance. Experimental Physiology, 108(5), 728-739. https://doi.org/10.1113/ep091032
Wernbom, M., Järrebring, R., Andreasson, M. A., & Augustsson, J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. The Journal of Strength & Conditioning Research, 23(8), 2389-2395. https://doi.org/10.1519/JSC.0b013e3181bc1c2a
Wilk, M., Gepfert, M., Krzysztofik, M., Stastny, P., Zajac, A., & Bogdanis, G. C. (2020a). Acute Effects of Continuous and Intermittent Blood Flow Restriction on Movement Velocity During Bench Press Exercise Against Different Loads. Frontiers in Physiology, 11, 569915. https://doi.org/10.3389/fphys.2020.569915
Wilk, M., Krzysztofik, M., Filip, A., Szkudlarek, A., Lockie, R. G., & Zajac, A. (2020b). Does Post-Activation Performance Enhancement Occur During the Bench Press Exercise under Blood Flow Restriction? International Journal of Environmental Research, 17(11). https://doi.org/10.3390/ijerph17113752
Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021a). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise [Original Research]. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896
Wilk, M., Krzysztofik, M., Jarosz, J., Krol, P., Leznicka, K., Zajac, A., Stastny, P., & Bogdanis, G. C. (2021b). Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs [Original Research]. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.626915
Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021c). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise [Original Research]. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896
Wilk, M., Krzysztofik, M., Filip, A., Zajac, A., Bogdanis, G. C., & Lockie, R. G. (2022). Short-Term Blood Flow Restriction Increases Power Output and Bar Velocity During the Bench Press. The Journal of Strength and Conditioning Research 36(8), 2082-2088. https://doi.org/10.1519/jsc.0000000000003649
Yasuda, T., Loenneke, J. P., Ogasawara, R., & Abe, T. (2013). Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. Acta Physiologica Hungarica, 100(4), 419-426. https://doi.org/10.1556/APhysiol.100.2013.4.6