簡易檢索 / 詳目顯示

研究生: 趙若水
Jo-Shui Chao
論文名稱: 台灣優秀耐力及瞬發力運動選手基因與蛋白質攝取之相關性
Associations of Genes and Protein Intake with Taiwanese Elite Endurance and Sprint Athletes
指導教授: 湯馥君
Tang, Fu-Chun
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 身體組成飲食調查運動類型ACE基因ACTN3基因AGT基因
英文關鍵詞: body composition, dietary survey, exercise type, ACE, ACTN3, AGT
論文種類: 學術論文
相關次數: 點閱:204下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是探討台灣優秀運動選手之身體組成、飲食攝取、基因型態與運動類型的關係。研究對象為18~25歲之優秀運動選手,依運動類型及性別分為四組:男耐力組(57位,20.3 ± 1.5歲)、男瞬發力組(89位,20.0 ± 1.4歲)、女耐力組(57位,20.3 ± 1.2歲)以及女瞬發力組(121位,20.0 ± 1.2歲);同時招募同年齡層之健康男控制組(100位,21.4 ± 2.2歲)以及健康女控制組(100位,21.4 ± 2.0歲);分別進行身體組成分析、跟骨廣頻超音波衰減率測量、「飲食、運動與生活習慣問卷」調查、ACE(I/D對偶基因)、ACTN3(R/X對偶基因)以及AGT(M/T對偶基因)之基因型判定。
    結果顯示,男性運動組之熱量攝取 (p<.0001)、蛋白質單位體重攝取 (p<.001)、除脂體重 (p<.0001) 及骨質密度 (p<.01) 皆顯著高於男控制組,其中於二運動組間之比較中,蛋白質攝取百分比及蛋白質單位體重攝取又以男瞬發力組顯著高於男耐力組 (p<.05)。於女性受試者之熱量攝取以女耐力組顯著高於女控制組 (p<.05),蛋白質攝取百分比 (p<.0001) 及蛋白質單位體重攝取 (p<.01) 以女運動組顯著高於女控制組,其中於二運動組之比較間,蛋白質攝取百分比及蛋白質單位體重攝取又以女瞬發力組顯著高於女耐力組 (p<.05)。除脂體重 (p<.0001) 及骨質密度 (p<.0001) 則以女運動組顯著高於女控制組,其中女瞬發力組又顯著高於女耐力組。基因檢測結果,ACE基因之基因型分配頻率,與控制組相較之下,男耐力組 (p<.05)、男瞬發力組 (p<.05) 及女耐力組 (p<.05) 選手之基因型分配頻率均達顯著差異;而在耐力型與瞬發力型之比較中,男性 (p<.001) 或女性 (p<.001) 選手之基因型分配頻率皆分別達顯著差異。於ACTN3基因中則是女性三組之基因型分配頻率之間的比較均達顯著差異 (p<.01)。AGT基因中,男女各組之基因型分配頻率比較皆未達顯著差異 (p>.05)。多元迴歸分析結果顯示,運動訓練、熱量攝取、蛋白質單位體重攝取量及ACE基因於女性運動選手中,共同解釋了除脂體重百分比19.0% 的變異量 (R2 = 0.190;p < 0.001);於男性運動選手則無顯著之解釋力。
    本研究發現,ACE基因和蛋白質攝取量可能在台灣優秀運動員的成績表現扮演重要角色;然而ACTN3基因可能只有利於台灣優秀女性運動選手。

    This study investigated the relationships among body composition, dietary intake, genotypes of the ACE, ACTN3, and AGT genes, and exercise type of Taiwanese elite athletes. Based on gender and exercise type, university elite athletes were divided into four groups: endurance/male (n = 57), sprint/male (n = 89), endurance/female (n = 57), and sprint/female (n = 121). Simultaneously, age-matched sedentary/healthy control/male (n = 100) and control/female (n = 100) were also recruited. We examined the body composition, calcaneus broadband ultrasound attenuation (BUA), dietary behavior and exercise status, and the genotypes of ACE (I/D alleles), ACTN3 (R/X alleles), and AGT (M/T alleles) of each participant.
    The energy (p<.0001), protein intake (g/kg/day; p<.001), fat-free mass (%; p<.0001), and BUA (p<.01) of male athlete groups were significantly higher than those of the control/male group, respectively. The energy intake (p<.05) of endurance/female group was significantly higher than that of the control/female group. The protein intake percentage (p<.0001) and protein intake on a body weight basis (p<.01) of female athlete groups were significantly higher than those of the control/female group, respectively. The fat-free mass (%; p<.0001) and BUA (p<.0001) of female athlete groups were significantly higher than those of the control/female group, respectively. The fat-free mass (%; p<.0001) and BUA (p<.0001) of the sprint/female group were also significantly higher than those of the endurance/female group, respectively. Furthermore, the protein intake, on either basis, of the sprint group was significantly higher (p< .05) than that of the corresponding endurance group for both genders.
    The ACE genotype distribution in endurance/male (p<.05), sprint/male (p<.05), or endurance/female (p<.05) group was significantly different from that of the corresponding control group, as well as the ACE genotype distribution between the endurance and sprint groups for both genders (p<.001). There were significant differences in ACTN3 genotype distribution among the three female groups (p<.01). The distribution of AGT genotype, however, was no different among all the groups (p>.05). According to the multiple regression analysis, the training duration (years), protein intake (g/kg/day), energy intake, and ACE gene explained 19.0% of the variation of FFM (%) in the female athletes (R2 = 0.190, P < 0.001).
    Both ACE genotype and protein intake might play roles in Taiwanese elite athletes’ performance. ACTN3 genotype, however, may benefit the performance of Taiwanese elite female athletes only.

    中文摘要 i 英文摘要 iii 謝誌 v 目次 vi 表次 ix 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究問題 3 第四節 名詞界定 3 第二章 文獻探討 5 第一節 肌肉生理 5 一、肌纖維類型 5 二、肌肉能量來源 6 第二節 運動基因 9 一、運動基因 9 二、ACE基因 11 三、ACTN3基因 12 四、AGT基因 13 第三節 營養素與基因之交互作用 14 第四節 運動訓練 16 第五節 文獻探討總結 17 第三章 研究方法 19 第一節 研究流程 19 第二節 研究架構 20 第三節 研究對象 21 第四節 研究工具與方法 22 一、 檢體與數據收集 22 二、 問卷調查與分析 25 三、 生理結構分析 26 第五節 統計分析 27 第四章 研究結果 28 第一節 基本資料 28 第二節 基因檢體結果 29 一、 基因型分配頻率 29 二、 對偶基因頻度 30 三、 基因型勝算比 31 四、 基因型合併分析 32 第三節 飲食營養與運動訓練 33 第四節 身體組成分析 35 第五節 握力測量 36 第六節 基因、飲食、運動訓練與身體組成 36 第五章 討論 38 第一節 優秀選手之ACE基因 38 第二節 優秀選手之ACTN3基因 40 第三節 優秀選手之AGT基因 41 第四節 身體組成分析 42 第五節 握力測量 46 第六章 結論與建議 49 第一節 結論 49 第二節 建議 51 第三節 未來研究之建議 52 參考文獻 68 一、中文部分 68 二、西文部分 69 附錄 84 附錄一 受試者同意書 84 附錄二 人體試驗倫理委員會同意臨床試驗證明書 85 附錄三 「飲食、運動與生活習慣問卷」 86 表 次 表4.1 ACE、ACTN3及AGT 基因型和所對應之運動能力 53 表4.2 受試者之生理參數 54 表4.3 男性受試者之ACE、ACTN3及AGT基因型 55 表4.4 男性受試者之ACE、ACTN3及AGT基因型 56 表4.5 受試者之ACE、ACTN3及AGT基因型勝算比 57 表4.6 合併受試者之ACE與ACTN3 genotypes 58 表4.7 合併受試者之ACE與AGT genotypes 59 表4.8 男性受試者之食物攝取調查 60 表4.9 女性受試者之食物攝取調查 61 表4.10 男性受試者之熱量分配調查 62 表4.11 女性受試者之熱量分配調查 63 表4.12 受試者之運動訓練時間 64 表4.13 男性受試者之身體組成分析 65 表4.14 女性受試者之身體組成分析 66 表4.15 不同ACE基因型受試者之除脂體重 67

    一、 中文部分
    王順正 (1999a)。骨骼肌的類型。運動生理週訊,30。
    王順正 (1999b)。認識無氧運動。運動生理週訊,34。
    白禮源(譯) (1995)。甘龍醫用生理學上、下冊 (Review of medical physiology)。臺北市:藝軒。(原著出版年﹕1991年)。
    行政院衛生署 (1998)。台灣常見食品營養圖鑑(編號:016099860023)。臺北市,行政院衛生署。
    行政院衛生署 (2003)。國人膳食營養素參考攝取量及其說明。臺北市:行政院衛生署。
    林正常 (2005)。運動生理學。臺北市:師大書苑。
    邱麗玲、謝玲玲、顏克典、謝伸裕 (2007)。ACTN3與ACE基因多形性與優秀爆發型運動員的相關性。體育學報,40,1-12頁。
    湯馥君、施嘉美、鄭景峰、賴淑萍、鄭小嵐、鄭榮生、張雅茹(譯)(2008) 。Asker Jeukendrupand Michael Gleeson著。運動營養學 (Sport nutrition: An introduction to energy production and performance)。臺北市:禾楓。
    賴淑萍 (2006)。大學生「女運動員三症候群」之相關探討。國立臺灣師範大學人類發展與家庭學系,碩士論文,未出版,臺北市。
    謝明家 (2000)。台灣第二型糖尿病人血管收縮素轉化酶之DD基因型的高出現 頻率。高雄醫學大學醫學研究所,碩士論文,未出版,高雄市。

    二、 西文部分
    Adhihetty, P. J., Irrcher, I., Joseph, A. M., Ljubicic, V., & Hood, D.A. (2003). Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 88(1): 99-107.
    Alvarez, R., Terrados, N., Ortolano, R., Iglesias-Cubero, G., Reguero, J. R., Batalla, A., Cortina, A., Fernández-García, B., Rodríguez, C., Braga, S., Alvarez, V., & Coto, E. (2000). Genetic variation in the renin-angiotensin system and athletic performance. European Journal of Applied Physiology, 82(1-2): 117-20.
    American College of Sports Medicine. (2006). Guidelines for exercise testing and prescription. (7th Edition), Lippincott, Inc., PA, USA.
    Amir, O., Amir, R., Yamin, C., Attias, E., Eynon, N., Sagiv, M., Sagiv, M., & Meckel, Y. (2007). The ACE deletion allele is associated with Israeli elite endurance athletes. Experimental Physiology, 92(5):881-886
    Anastasiya, M. D., Ildus, I .A., Irina, V. A., & Viktor, A. R. (2008). Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European Journal of Applied Physiology, 103: 631-634
    Andersen, P., & Henriksson, J. (1977). Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiologica Scandinavica, 99: 123-125.
    Angyán, L., Téczely, T., Karsai, I., & Petofi, A. (2005). Comparative analysis of the effects of physical exercise. Acta Physiologica Hungarica, 92(1), 19-26.
    Bailey, L.B. and Gregory, J.F. (1999). Polymorphism of methylenetetrahydrofolate reductase and other enzymes: Metabolic significance, risks and impact on folate requirement. Journal of Nutrition, 129: 919-922.
    Bale, P., Mayhew, J. L., Piper, F. C., Ball, T. E., & Willman, M. K. (1992). Biological and performance variables in relation to age in male and female adolescent athletes. The Journal of Sports Medicine and Physical Fitness, 32(2): 142-148.
    Bassett, C. A. L. (1968). Biologic significance of piezoelectricity. Calcified Tissue International, 1: 252-272.
    Bhasin, S., Storer, T. W., Berman, N., Callegari, C., Clevenger, B., Phillips, J., Bunnell, T. J., Tricker, R., Shirazi, A., & Casaburi, R. (1996). The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. The New England Journal of Medicine, 335:1-7.
    Bennell, K. L., Malcolm, S. A., Khan, K. M., Thomas, S. A., Reid, S. J., Brukner, P. D., Ebeling, P. R., & Wark, J. D. (1997). Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone, 20(5): 477-84.
    Berger, A., Mutch, D. M., German, J. B., & Roberts, M. A. (2002). Unraveling lipid metabolism with microarrays: Effects of arachidonate and docosahexaenoate acid on murine hepatic and hippocampal gene expression. GenomeBiology, 3: 0004.1-0004.53.
    Brown, J. M., Boysen, M. S., Chung, S., Fabiyi, O., Morrison, R. F., Mandrup, S., & McIntosh, M. K. (2004). Conjugated linoleic acid induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. The Journal of Biological Chemistry, 279: 26735-26747.
    Bruhat, A., Jousse, C., Wang, X. Z., Ron, D., Ferrara, M., & Fafournoux, P. (1997). Amino acid limitation induces expression of CHOP, a CCAAT/ enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. The Journal of Biological Chemistry, 272: 17588-17593.
    Busjahn, A., Knoblauch, H., Knoblauch, M., Bohlender, J., Menz, M., Faulhaber, H.D., Becker, A., Schuster, H., & Luft, F. C. (1997). Angiotensin-converting enzyme and angiotensinogen gene polymorphisms, plasma levels, cardiac dimensions. A twin study. Hypertension, 29: 165-170.
    Butterfield, G. E. & Calloway, D. H. (1984). Physical activity improves protein utilization in young men. British Journal of Nutrition, 51: 171-184.
    Campbell, L. E., Wang, X., & Proud, C. G. (1999). Nutrients differentially regulate multiple translation factors and their control by insulin. Biochemical Journal, 344: 433-441.
    Chavez, A., Munoz, & Chavez, M. (2003). Nutrigenomics in public health nutrition : short-term perspectives. European Journal of Clinical Nutrition, 57(1): S97-100.
    Chen, J. J., Duan, T., Single, R., Mather, K., & Thomson, G. (2005). Hardy-Weinberg Testing of a Single Homozygous Genotype. Genetics, 170: 1439-1442.
    Chiang, F. T., Chern, T. H., Lai, Z. P., Tseng, C. D., Hsu, K. L., Lo, H. M., & Tseng, Y. Z. (1996). Age- and gender-dependent association of the angiotensin- converting enzyme gene with essential hypertension in a Chinese population. Journal of Human Hypertension, 10: 823-826.
    Chiang, F. T., Hsu, K. L., Tseng, C. D., Hsiao, W. H., Lo, H. M., Chern, T. H., & Tseng, Y. Z. (1997). Molecular variant M235T of the angiotensinogen gene is associated with essential hypertension in Taiwanese. Journal of Hypertension, 15: 607-611.
    Chuang, L. M., Chiu, K. C., Chiang, F. T., Lee, K. C., Wu, H. P., Lin, B. J., & Tai, T. Y. (1997). Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene in patients with hypertension, non-insulin-dependent diabetes mellitus, and coronary heart disease in Taiwan. Metabolism, 46: 1211-1214.
    Chowanadisai, W., Kelleher, S.L., & Lonnderdal, B. (2004). Maternal zinc deficiency raises plasma prolactin levels in lactating rats. Journal of Nutrition, 134: 1314-1319.
    Clarkson, P. M., Devaney, J. M., Gordish-Dressman, H., Thompson, P. D., Hubal, M. J., Urso, M., Price, T. B., Angelopoulos, T. J., Gordon, P. M., Moyna, N. M., Pescatello L. S., Visich, P. S., Zoeller, R. F., Seip, R. L., & Hoffman, E. P. (2005). ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. Journal of Applied Physiology, 99(1): 154-163.
    Collins, F. S., Lander, E. S., Rogers, J., & Waterston, R. H. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431: 931-945.
    Fafournoux, P., Bruhat, A., & Jousse, C. (2000). Amino acid regulation of gene expression. Biochemical Journal, 351: 1-12.
    Farrell, P. A., & Barboriak, J. (1980). The time course of alterations in plasma lipid and lipoprotein concentrations during eight weeks of endurance training. Atherosclerosis, 37: 231-238.
    Fogg-Johnson, N. & Merolli, A. (2000). Nutrigenomics: The next wave in nutrition research. Nutrition, 3(3): 87-90.
    Fox, E. L.& Bowers, R. (1988). Sprint and endurance training: methods and effects. In: Sports physiology. (3rd Edition), pp 225-280. Dubuque, IA: Wm. C. Brown.
    Freyssenet, D., Berthon, P., & Denis, C. (1996). Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Archives of Physiology and Biochemistry, 104:129-41.
    Gameau, L. J., Brown, L. D., Moore, M. A., Donnenhoffer, J. E., & Demyan, W. B. (2005). Optimization of LightTyper genotyping assays. Biochemica, 3: 4-6.
    Gayagay, G., Yu, B., Hambly, B., Boston, T., Hahn, A., Celermajer, D.S., & Trent R.J. (1998). Elite endurance athletes and the ACE I allele ---the role of genes in athletic performance. Human Genetics, 103: 48-50.
    Gettman, L. R., Ward, P., & Hagan, R. D. (1981). Strength and endurance changes through circuit weight training. National Strength and Conditioning Association Journal, 3(4): 12-14.
    Goel, H. & Mittal, B. (2007). ACTN3: Athlete gene prevalence in North India. Current Science, 92(1): 84-86.
    Goldspink, G. (1998). Selective gene expression during adaption of muscle in response to different physiological demands. Comparative Biochemistry and Physiology, 120: 5-15.
    Gollnick, P.D., Armstrong, R.B., Saltin, B., Saubert, C. I., Sembrowich, W. L., & Shepherd, R. E. (1973). Effect of training on enzyme activity and fiber composition of human skeletal muscle. Journal of Applied Physiology,, 34: 107–111.
    Gollnick, P. D., Armstrong, R.B., Saubert, C. I., Piehl, K., & Saltin, B. (1972). Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. European Journal of Applied Physiology, 33: 312–319.
    Gordon, S., Davis, B. S., Carlson, C. J., & Booth, F. W. (2001). Ang II is required for optimal overload-induced skeletal muscle hypertrophy. American Journal of Physiology: Endocrinology and Metabolism, 280: E150–E159.
    Guerrini, L., Gong, S. S., Mangasarian, K. & Basilico, C. (1993). Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Molecular and Cellular Biology, 13: 3202-3212
    Hammill, E., Wilson, R. S., & Johnston, I. A. (2004). Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. Journal of Thermal Biology, 29: 251–257.
    Harrap, S. B., Tzourio, C., Cambien, F., Poirier, O., Raoux, S., Chalmers, J., Chapman, N., Colman, S., Leguennec, S., MacMahon, S., Neal, B., Ohkubo, T., & Woodward, M. (2003). The ACE gene ID polymorphism is not associated with the blood pressure and cardiovascular benefits of ACE inhibition. Hypertention, 42: 297-303.
    Harrigan, G. G., Brackett, D. J., & Boros, L. G. (2005). Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics. Mini Reviews in Medicinal Chemistry, 5:13-20.
    Hasty, A. H., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Perrey, S., Yoshikawa, T., Osuga, J., Okazaki, H., Tamura, Y., Iizuka, Y., Shionoiri, F., Ohashi, K., Harada, K., Gotoda, T., Nagai, R., Ishibashi, S., & Yamada, N. (2000). Sterol regulatory element binding protein-1 is regulated by glucose at the transcriptional level. The Journal of Biological Chemistry, 275: 31069-31077.
    Heck, A. L., Barroso, C. S., Callie, M. E., & Bray, M. S. (2004). Gene-nutrition interaction in human performance and exercise response. Nutrition, 20: 598-602.
    Hillman, L. S. (1990). Nutritional factors affecting mineral homeostasis and mineralization in the term and preterm ingant. In D. J. Simmons (Eds.), Nutrition and bone development (pp. 55-67). New York, NY: Oxford University.
    Hoppeler, H. & Fluck, M. (2003). Plasticity of skeletal muscle mitochondria: structure and function. Medicine & Science in Sports & Exercise, 35(1): 95-104.
    Hsieh, M. C., Lin, S. R., Hsieh, T. J., Hsu, C. H., Chen, H. C., Shin, S. J., & Tsai, J. H. (2000). Increased frequency of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes in Taiwan. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association, 15: 1008-1013.
    Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D., and Uyeda, K. (2004). Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proceedings of National Academy of Science, 101: 7281-7286.
    Ingjer, F. (1979). Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. The Physiological Society, 294: 419-432.
    Iwai, N., Shimoike, H., Ohmichi, N., & Kinoshita, M. (1995). Angiotensinogen gene and blood pressure in the Japanese population. Hypertension, 25: 688-693.
    Johnston, I.A. & Moon, T.W. (1980). Endurance exercise training in the fast and slow muscles of a teleost fish (Pollachius virens). Journal of Comparative Physiology, 135: 147–156.
    Karjalainen, J., Kujala, U. M., Stolt, A., Mäntysaari, M., Viitasalo, M., Kainulainen, K., & Kontula, K. (1999). Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. Journal of the American College of Cardiology, 34: 494-499.
    Kauma, H., Ikäheimo, M., Savolainen, M. J., Kiema, T. R., Rantala, A. O., Lilja, M., Reunanen, A., & Kesaniemi Y. A. (1998). Variants of renin-angiotensin system genes and echocardiographic left ventricular mass. European Heart Journal, 19: 1109-1117.
    Lemon, P. W. R. (1991). Protein and amino acid needs of the strength athlete. International Journal of Sport Nutrition, 1: 127-145
    Levy, D., DeStefano, A. L., Larson, M. G., O’Donnell, C. J., Lifton, R. P., Gavras, H., Cupples, L. A., Myers, R. H. (2000). Evidence for a gene influencing blood pressure on chromosome 17: Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension, 36:477-483.
    Lynch, A. I., Arnett, D. K., Pankow J. S., Miller, M. B., North, K. E., Eckfeldt, J. H., Hunt S. C., Rao D. C., & Djoussé, L. (2007). Sex-specific effects of ACE ID and AGT-M235T on pulse pressure: the HyperGEN Study. Human Genetics, 122: 33-40.
    Lucia, A., Gómez-Gallego, F., Santiago, C., Bandrés, F., Earnest, C., Rabadán, M., Alonso, J. M., Hoyos, J., Córdova, A., Villa, G., & Foster, C. (2006). ACTN3 Genotype in Professional Endurance Cyclists. International Journal of Sports Medicine, 27(11): 880-884
    MacArthur, D. G., & North, K. N. (2004). A gene for speed? The evolution and function of alpha-actinin-3. BioEssays, 26: 786-795.
    MacArthur, D. G., & North, K. N. (2007). ACTN3: A genetic influence on muscle function and athletic performance. Exercise and Sport Sciences Reviews, 35(1): 30-34.
    Mater, M. K., Thelen, A. P., Pan, D. A., & Jump, D. B. (1999). Sterol response element-binding protein 1c (SREBP1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. The Journal of Biological Chemistry 274: 32725-32732.
    Meredith, C. N., Frontera, W. R., Fisher, E. C., Hughes, V. A., Herland, J. C., Edwards, J. & Evans, W. J. (1989). Peripheral effects of endurance training in young and old subjects. Journal of Applied Physiology, 66: 2844-2849.
    Mills, M. A., Yang, N., Weinberger, R. P., Vander Woude, D. L., Beggs, A. H., & Easteal, S. (2001). Differential expression of the actin-binding proteins, α-actinin-2 and -3, in different species: Implications for the evolution of function redundancy. Human Molecular Genetics, 10(13): 1335-1346.
    Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., & Humphries, S. E. (1998). Human gene for physical performance. Nature, 393: 221-222.
    Moran, C. N., Yang, N., Bailey, M. E. S., Tsiokanos, A., Jamurtas, A., MacArthur, D. G., North, K., Pitsiladis, Y. P., & Wilson, R. H. (2007). Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics, 15(1): 88-93.
    Myerson, S. G., Montgomery, H. E., Whittingham, M., Jubb, M., World, M. J., Humphries, S. E., & Pennell, D. J. (2001). Left ventricular hypertrophy with exercise and ACE gene insertion/deletion polymorphism: a randomized controlled trial with losartan. Circulation, 103: 226–230.
    Myerson, S., Hemingway, H., Budget, R., Martin, J., Humphries, S., & Montgomery, H. (1999). Human angiotensin I-converting enzyme gene and endurance performance. Journal of Applied Physiology, 87: 1313-1316.
    Nazarov, I. B., Woods, D. R., Montgomery, H. E., Shneider, O. V., Kazakov, V. I., Tomilin, N. V., & Rogozkin, V. A. (2001). The angiotensin converting enzyme ID polymorphism in Russian athletes. European Journal of Human Genetics, 9: 797-801.
    Niculescu, M. D., & Zeisel, S. H. (2002). Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. Journal of Nutrition, 132(8): 2333S-2335S.
    Niemi, A. K., & Majamaa K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics, 13: 965-969.
    Noriyuki, S., Tomohiro, K., Tsutomu, N., Kazuhiko, I., Yuxiao, F., Takashi, A., Masayuki, F., Fumiaki, S., Yukio, N., Jitsuo, H., & Toshio, O. (2000). Nine polymorphisms of angiotensinogen gene in the susceptibility to essential hypertension. Life Sciences, 68: 259-272.
    North, K. N., Yang, N., Wattanasirichaigoon D., Mills, M., Easteal, S., & Beggs, A. H. (1999). A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nature Genetics, 21: 353-354.
    Patterson, R.E., Eaton, D.L., & Potter, J.D. (1999). The genetic revolution: Change and challenge for the dietetics profession. Journal of the American Dietetic Association, 99: 1412-1420.
    Payne, J., & Montgomery, H. (2003). The renin-angiotensin system and physical performance. Biochemical Society Transactions, 31: 1286-1289.
    Rankinen, T., Wolfarth, B., Simoneau, J. A., Maier-Lenz, D., Rauramaa, R., Rivera, M. A., Boulay, M. R., Chagnon, Y. C., Perusse, L., Keul, J. & Bouchard, C. (2000). No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. Journal of Applied Physiology, 88: 1571-1575.
    Rankinen, T., Pérusse, L., Rauramaa, R., Rivera, M. A., Wolfarth, B., & Bouchard, C. (2002). The human gene map for performance and health-related fitness phenotypes: the 2001 update. Medicine & Science in Sports & Exercise, 34: 1219-1233.
    Rattigan, S., Dora, K. A., Tong, A. C., & Clark, M. G. (1996). Perfused skeletal muscle contraction and metabolism improved by angiotensin II-mediated vasoconstriction. American Journal of Physiology, 271: E96-E103.
    Redonnet, A., Bonilla, S., Noel-Suberville, C., Pallet, V., Dabadie, H., Gin, H., & Higueret, P. (2002). Relationship between peroxisome proliferator-activated receptor gamma and retinoic acid receptor alpha gene expression in obese human adipose tissue. International Journal of Obesity & Related Metabolic Disorders, 26: 920-927.
    Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Physiology, 20: 457-483.
    Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., & Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin-1-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation, 86: 1343-1346.
    Roth, S. M., Walsh, S., Liu, D., Metter, E. J., Ferrucci, L., & Hurley, B.F. (2008). The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. European Journal of Human Genetics, 16(3): 391-394
    Scanavini, D., Bernardi, F., Castoldi, E., Conconi, F., & Mazzoni, G. (2002). Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. European Journal of Human Genetics, 10: 576-577.
    Shah, J. (2004). Criteria influencing the clinical uptake of pharmacogenomic strategies. British Medical Journal, 328(7454): 1482-1486.
    Simoneau, J.A., Lortie, G., Bonlay, M.R., Marcotte, C.M., Thibault, M.C., & Bouchard, C. (1985). Human skeletal muscle fiber type alteration with high intensity intermittent training. European Journal of Applied Physiology, 54: 250-253.
    Slattery, M. L., Neuhausen, S. L., Hoffman, M., Caan, B., Curtin, K., Ma, K.N., & Samowitz, W. (2004). Dietary calcium, vitamin D, VDR genotypes and colorectal cancer. International journal of cancer, 111: 750-756.
    Straus, D. S., Burke, E. J. & Marten, N. W. (1993). Induction of insulin-like growth factor binding protein-1 gene expression in liver of protein-restricted rats and in rat hepatoma cells limited for a single amino acid. Endocrinology, 132: 1090-1100.
    Taylor, R.R., Mamotte, C.D., Fallon, K. & van Bockxmeer, F. M. (1999). Elite athletes and the gene for angiotensin-converting enzyme. Journal of Applied Physiology, 87: 1035-1037.
    Tarnopolsky, M. A., Atkinson, S. A. ,MacDougall, J. D., Chesley, A., Phillips, S., Schwarcz, H. P. (1992). Evaluation of protein requirements for trained strength athletes. Journal of Applied Physiology, 73: 1986-1995.
    Thompson, W. R., & Binder-Macleod, S. A. (2006). Association of genetic factors with selected measures of physical performance. Physical Therapy, 86: 585-591.
    Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, J. D., & Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology, 276: E628–E634.
    Touyz, R. M., Deng, L. Y., He, G., Wu, X. H., & Schiffrin, E. L. (1999). AngiotensinⅡstimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. Journal of Hypertension, 17: 907-916.
    Tsai, C. T., Fallin, D., Chiang, F. T., Hwang, J. J., Lai, L. P., Hsu, K. L., Tseng, C. D., Liau, C. S., & Tseng, Y. Z. (2003). Angiotensinogen gene haplotype and hypertension: interaction with ACE gene I allele. Hypertension, 41: 9-15.
    Wernstedt, P., Siostedt, C., Ekman, I. H., Thuomas, K. A., Areskog, N. H., & Nylander, E. (2002). Adaptation of cardiac morphology and function to endurance and strength: A comparative study using MR imaging and echocardiography in males and females. Scansina Journal of Medicine and Science in Sports, 12(1): 17-25.
    Whitney, E., & Rolfes, S. R. (2005). Water and the major minerals. In: Understanding nutrition. (10th Edition), pp.394-435. Thomson Wadsworth, Inc., CA, USA.
    Williams, M. H. (2007). Human energy. In: Nutrition for Health, Fitness, & Sports, 8th edn. McGraw-Hill, New York, pp 81–110.
    Williams, A. G., Rayson, M. P., Jubb, M., World, M., Woods, D. R., Hayward, M., Martin, J., Humphries, S. E., & Montgomery H. E. (2000). The ACE gene and muscle performance. Nature, 403: 614.
    Wilmore, J.H., Parr, R.B., Haskell, W.L., Costill, D.L., Milburn, L.J. & Kerlan, R.K. (1976). Athletic profile of professional football players. The Physician and Sports medicine, 4: 45-54.
    Woods, D., Hickman, M., & Jamshidi, Y. (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Human Genetics, 108: 230-232.
    Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., & North, K. (2003). ACTN3 genotype is associated with human elite athletic performance. American Journal of Human Genetics, 73: 627-631.
    Zellner, D. A., Harner, D. E., & Adler, R. L. (1989). Effects of eating abnormalities and gender on perceptions of desirable body shape. Journal of Abnormal Psychology, 98(1), 93-96.
    Zhang, B., Tanaka, H., Shono, N., Miura, S., Kiyonaga, A., Shindo, M., & Saku, K. (2003). The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch typeⅠfibers in human skeletal muscle. Clinical Genetics, 63: 139-144.
    Zhao B., Moochhala S. M., Tham S. Y., Lu, J., Chia, M., Byrne C., Hu Q., & Lee L. K. (2003). Relationship between angiotensin-converting enzyme ID polymorphism and VO2max of Chinese males. Life Sciences, 73: 2625-2630.
    Zhu, H., Bilgin, M., & Snyder, M. (2003). Proteomics. Annual Review of Biochemistry, 72: 783-812.

    下載圖示
    QR CODE