簡易檢索 / 詳目顯示

研究生: 林琮翔
Lin, Tsorng Shyang
論文名稱: 安肌肽攝取對酸鹼緩衝能力與c之影響
The Effects of Anserine Ingestion on Buffering Capacity and Exercise Performance
指導教授: 謝伸裕
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 安肌肽酸鹼緩衝能力運動表現血乳酸血液pH值
英文關鍵詞: anserine, buffering capacity, exercise performance, lactic acid, blood pH
論文種類: 學術論文
相關次數: 點閱:156下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 安肌肽攝取對酸鹼緩衝能力與運動表現之影響
    摘要
    民國92年6月
    研 究 生:林琮翔
    指導教授:謝伸裕
    前言:在高強度無氧性運動中,乳酸與氫離子的累積造成pH值過度下降,是引起肌肉疲勞現象的重要因素之一。本研究目的在於探討不同劑量安肌肽補充對於無氧性運動表現與血液酸鹼狀態的影響。方法:本研究以12名健康的體育系大學生為受試對象 (年齡22.3 ± 1.6歲、體重71.8 ± 10.8公斤、身高176.2 ± 3.9公分,最大攝氧量43.7 ± 8.2 ml/kg/min),採雙盲重複量數實驗設計,並以對抗平衡次序法執行測驗。每位受試者均接受低劑量(L)15 mg/kg、高劑量(H)30 mg/kg以及安慰劑(P)之實驗處理,並在服用後進行125%最大攝氧量之跑步機衝刺跑(treadmill sprint run)測驗,觀察安肌肽對運動後血液酸鹼緩衝能力與運動衰竭時間的影響。運動前以留置針(21G)埋入肱前靜脈,以含有heparin之真空管在運動前及後2、5、10分鐘採集血液樣本,所有血液樣本立即以YSI 23L Plus分析血乳酸濃度,以Corning 240 pH meter分析血液pH值,並記錄TSR運動時間。結果:在不同劑量安肌肽間,血乳酸在運動後2、5、10分鐘並無顯著差異(p>.05)。但運動前血乳酸安靜值在高劑量處理 (1.14 ± 0.33 mM) 則顯著高於安慰劑處理 (0.84 ± 0.16 mM) (p<.05),為減少此實驗誤差所造成的影響,以運動前安靜血乳酸值為前測共變數進行共變數分析,結果各劑量處理間在運動後2、5、10分鐘仍無顯著差異(p>.05)。運動後十分鐘之血液pH值,高劑量處理 (7.218 ± 0.091) 顯著高於安慰劑處理(7.115 ± 0.077) (p<0.05)。在血液緩衝能力上,高劑量處理 (49.51 ± 37.42 slykes) 顯著高於安慰劑處理 (24.59 ± 8.42 slykes) (p<0.05)。然而,TSR之衰竭時間在不同劑量處理間並無顯著差異(p>.05)。結論:運動前攝取安肌肽對高強度無氧性運動後血乳酸值以及運動衰竭時間並無影響,但高劑量安肌肽(30 mg/kg)的攝取可顯著提升運動中的血液酸鹼緩衝能力。
    關鍵詞:安肌肽、酸鹼緩衝能力、運動表現、血乳酸、血液pH值

    The Effects of Anserine Ingestion on
    Buffering Capacity and Exercise Performance
    June 2003 Abstract Student:Lin, Tsorng Shyang
    Advisor:Hsieh, Shen-Yu
    Introduction:During the high intensity anaerobic exercise, increased of lactic acid and hydrogen ion concentration can cause a decrease of pH in the muscle and blood, which is one of the factors that induces fatigue during muscle contraction. The purpose of the study is to examine the effects of different anserine dosages ingestion on anaerobic exercise performance and blood buffering capacity. Method:Twelve healthy college students (age:22.3 ± 1.6 years;weight:71.8 ± 10.8 kg;high:176.2 ± 3.9 cm; VO2max:43.7 ± 8.2 ml/kg/min) were the subjects. A repeated-measure and double-blind design was used and each subject went through all three treatments. The oral anserine ingestion for low (L) 15 mg/kg、high (H) 30 mg/kg dosages and placebo (P) condition was given in a counterbalanced order. One hour after ingestion, a 125% VO2max treadmill sprint run test was undertaken. The exercise time to exhaustion was recorded. Blood samples were drawn before exercise and 2,5,10 minutes after exercise from forearm vein with a 21G I.V. catheter placed in it and immediately analyzed for lactic acid concentration (YSI 23L Plus) and pH value (Corning 240 pH meter). The repeated-measure one-way ANOVA was used for statistical analysis to verify the differences in all variables between dosages. Results:The lactic acid concentrations at 2、5、10 minutes after exercise were not significant different between dosages (p>.05). However, a significant difference was found between H (1.14 ± 0.33 mM) and P group (0.84 ± 0.16 mM) before exercise (p<.05). Thus, a one-way ANCOVA was used to correct this experiment error. Result shows that there were still no significant differences between dosages on lactic acid concentrations at 2,5,10 minutes after exercise (p>.05). The blood pH at 10 minutes after exercise was significant different between H (7.218 ± 0.091) and P group (7.115 ± 0.077) (p<.05). The blood buffering capacity was significant different between H (49.51 ± 37.42 slykes) and P group (24.59 ± 8.42 slykes) (p<.05). The TSR exercise time to exhaustion was not significant different between dosages (p>.05). Conclusion:Ingestion of anserine with dosages used in present study had no effect on the lactic acid concentrations after high intensity anaerobic exercise and performance time to exhaustion. However, high dosage (30 mg/kg) ingestion of anserine can increase the buffering capacity of the blood during exercise.
    Key words:anserine, buffering capacity, exercise performance, lactic acid, blood pH

    目次 碩士論文授權書-----------------------------------------------i 電子檔案上網授權書-------------------------------------------ii 中文摘要-----------------------------------------------------iii 英文摘要-----------------------------------------------------iv 謝誌---------------------------------------------------------v 第一章 緒論--------------------------------------------------1 一、 前言--------------------------------------------------1 二、 研究目的----------------------------------------------3 三、 研究的重要性------------------------------------------3 四、 名詞操作性定義----------------------------------------3 五、 研究限制----------------------------------------------3 六、 研究假設----------------------------------------------4 第二章 相關文獻探討------------------------------------------5 一、 安肌肽的吸收與代謝------------------------------------5 二、 安肌肽與酸鹼緩衝功能----------------------------------7 三、 體內酸鹼平衡與運動表現--------------------------------10 四、 安肌肽與運動能力--------------------------------------14 五、 結語--------------------------------------------------16 第三章 研究方法----------------------------------------------17 一、 受試者------------------------------------------------17 二、 實驗設計----------------------------------------------17 三、 各項資料的處理與分析----------------------------------19 四、 統計分析----------------------------------------------21 第四章 結果--------------------------------------------------22 一、 受試者基本資料----------------------------------------22 二、 血乳酸------------------------------------------------23 三、 血液pH值---------------------------------------------25 四、 血液緩衝能力------------------------------------------26 五、 TSR衰竭運動時間 -------------------------------------27 第五章 討論與結論--------------------------------------------28 一、 血乳酸值----------------------------------------------28 二、 血液pH值---------------------------------------------29 三、 血液酸鹼緩衝能力--------------------------------------30 四、 TSR運動衰竭時間 -------------------------------------32 五、 結論--------------------------------------------------35 引用文獻-----------------------------------------------------36 附錄一 受試者告知及同意書------------------------------------43 附錄二 健康狀況調查表----------------------------------------44 附錄三 攝取次序表--------------------------------------------45 附錄四 受試者基本資料----------------------------------------46 附錄五 安慰劑處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血乳酸值與血乳酸峰值(Peak)原始資料 ---------------47 附錄六 安慰劑處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血液pH值與血液pH最低值(Minimum)原始資料--------48 附錄七 低劑量處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血乳酸值與血乳酸峰值(Peak)原始資料 ---------------49 附錄八 低劑量處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血液pH值與血液pH最低值(Minimum)原始資料--------50 附錄九 高劑量處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血乳酸值與血乳酸峰值(Peak)原始資料---------------51 附錄十 高劑量處理運動前(Pre)與運動後2 (Post2)、5 (Post5)、10 (Post10)分鐘血液pH值與血液pH最低值(Minimum)原始資料--------52 附錄十一 不同劑量間血液緩衝能力原始資料----------------------53 附錄十二 不同劑量間TSR測驗衰竭時間原始資料-----------------54 附錄十三 不同劑量間運動前血乳酸值統計分析表 -----------------55 附錄十四 不同劑量間運動後兩分鐘血乳酸值統計分析表 -----------56 附錄十五 不同劑量間運動後五分鐘血乳酸值統計分析表------------57 附錄十六 不同劑量間運動後十分鐘血乳酸值統計分析表------------58 附錄十七 不同劑量間運動後兩分鐘血乳酸值共變數分析表----------59 附錄十八 不同劑量間運動後五分鐘血乳酸值共變數分析表----------60 附錄十九 不同劑量間運動後十分鐘血乳酸值共變數分析表----------61 附錄二十 不同劑量間血乳酸峰值統計分析表----------------------62 附錄二十一 安慰劑處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血乳酸值統計分析表---------------------63 附錄二十二 低劑量處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血乳酸值統計分析表---------------------64 附錄二十三 高劑量處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血乳酸值統計分析表---------------------65 附錄二十四 不同劑量間運動前血液pH值統計分析表---------------66 附錄二十五 不同劑量間運動後兩分鐘血液pH值統計分析表---------67 附錄二十六 不同劑量間運動後五分鐘血液pH值統計分析表---------68 附錄二十七 不同劑量間運動後十分鐘血液pH值統計分析表---------69 附錄二十八 不同劑量間血液pH最低值統計分析表-----------------70 附錄二十九 安慰劑處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血液pH值統計分析表------ ------------71 附錄三十 低劑量處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血液pH值統計分析表 ------------------72 附錄三十一 高劑量處理運動前 (Pre)、運動後2 (Post2)、5 (Post5)、10分鐘 (Post10)血液pH值統計分析表 ------------------73 附錄三十二 不同劑量間酸鹼緩衝能力統計分析表 ------------------74 附錄三十三 不同劑量間運動衰竭時間統計分析表 ------------------75 附錄三十四 最大攝氧量測驗過程圖 ------------------------------76 附錄三十五 TSR測驗過程圖 ------------------------------------77 附錄三十六 血液分析過程圖 ------------------------------------78 個人小傳 -----------------------------------------------------79

    中文部分
    王炯中,張錦標。(民85)。臨床血液氣體分析儀測定原理與操作保養之探討。國防醫學,22(4),314~321。
    林正常。(民84)。運動生理學實驗指引。台北市:師大書苑。
    胡倫魁。(民81)。重碳酸氫鈉和檸檬酸鈉飲料攝取對腳踏車測試時無氧性代謝與無氧動力影響。未出版碩士論文,國立體育學院運動科學研究所,台北縣。
    詹岱倫。(民83)。中劑量之重碳酸氫鈉攝取所誘發之鹼血峰值對無氧耐力的影響。未出版碩士論文,國立體育學院運動科學研究所,台北縣。
    西文部分
    Abe, H. (2000). Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry(Moscow), 65(7), 757~765.
    Abe, H., Dobson, G. P., Hoeger, U., Parkhouse, W. S. (1985). Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. American Journal of Physiology, 249, R449~R454.
    Abe, H. (1991). Interorgan transport and catabolism of carnosine and anserine in rainbow trout. Comparative Biochemistry and Physiology, 100B(4), 717~720.
    Abe, H., Okuma, E., Sekine, H., Maeda, A., Yoshiue, S. (1993). Human urinary excretion of L-histidine-related compounds after ingestion of several meats and fish muscle. International Journal of Biochemistry, 25(9), 1245~1249.
    Adibi, S. A., Morse, E. L. (1971). Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. The Journal of Clinical Investigation, 50, 2266~2275.
    Aonuma, S., Hama, T., Tamaki, N. (1970). Interconversion of the tritium labeled anserine and carnosine in rat liver and muscle. Jouranl of Biochemistry, 68, 581~583.
    Boldyrev, A. A. (1990). Retrospectives and perspectives on the biological activity of histidine-containing dipeptides. International Journal of Biochemistry, 22(2), 129~132.
    Castellini, M. A., Somero, G. N. (1981). Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. Journal of Comparative Physiology, 143, 191~198.
    Chan, W. K. M., Decker, E. A., Chow, C. K., Boissonneault, G. A. (1994). Effect of dietary carnosine on plasm and tissue antioxidant aoncentrations amd lipid oxidation in rat skeletal muscle. Lipids, 29(7), 461~466.
    Cox, G., Jenkins, D. G. (1994). The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. Journal of Sports Science, 12, 469~475.
    Costill, D. L., Barnett, A., Sharp, R., Fink, W. J., Katz, A. (1983). Leg muscle pH folowing sprint running. Medicine and Science in Sports and Exercise, 15(4), 325~329.
    Davey, C. L. (1960). The significance of carnosine and anserine in striated skeletal muscle. Archives of Biochemistry and Biophysics, 89, 303~308.
    Donaldson, S. K. B., Hermansen, L. (1978). Differential, direct effects of H+ on Ca2+-activated force of skinned fibres from soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Archiv : European Journal of Physiology, 376, 55~65.
    Fabiato, A., Fabiato, F. (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells drom cardiac and skeletal muscles. Journal of Physiology, 276, 233~255.
    Gardner, M. L. G., Illingworth, K. M., Kelleher, J., Wood, D. (1991). Intestinal absorption of intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. Journal of Physiology, 439, 411~422.
    Hagberg, H. (1985). Intracellular pH duing ischemia in skeletal muscle:relationship to membrane potential extracellular pH, tissue lactic acid and ATP. Pflugers Archiv : European Journal of Physiology, 404, 342~347.
    Hama, T., Tamaki, N., Miyamoto, F. (1976). Intestinal absorption ofβ-alanine, anserine and carnosine in rats. Journal of Nutritional Science and Vitaminology, 22, 147~157.
    Harris, R. C., Dunnett, M., Greenhaff, P. L. (1998). Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. Journal of Sports Sciences, 16, 639~643.
    Harris, R. C., Marlin, D. J., Dunnett, M., Snow, D. H., Hultman, E. (1990). Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comparative Biochemistry and Physiology, 97A(2), 249~251.
    Hermansen, L., Osnes, J. B. (1972). Blood and muscle pH after maximal exercise in man. Journal of Applied Physiology, 32(3), 304~308.
    Hultman, E., Sahlin, K. (1981). Acid-base balance during exercise. Exercise and Sport Science Reviews, 8, 41~128.
    Hultman, E., Canale, S. D., Sjoholm, H. (1985). Effect of induced metabolic acidosis on intracellular pH, buffer capacity and contraction force of human skeletal muscle. Clinical Science, 69, 505~510.
    Jackson, M. C., Kucera, C. M., Lenny, J. F. (1991). Purification and properties of human serum carnosinase. Clinica Chimica Acta, 196, 193~206.
    Jones, N. L., Sutton, J. R., Taylor, R., Toews, C. J. (1977). Effect of pH on cardiorespiratory and metabolic responses to exercise. Journal of Applied Physiology, 43(6), 959~964.
    Katz, A.,Costill, D. L., King, D. S., Hargreaves, M., Fink, W. J. (1984). Maximal exercise tolerance after induced alkalosis. International Journal of Sports Medicine, 5(2), 107~110.
    Katz, A., Barnett, A., Costill, D. L., Fink, W. J., Sharp, R. L. (1983). Leg muscle pH following sprint running. In Knuttgen, H. G., Vogel, J. A., Poortmans, J.(Eds.), Biochemistry of exercise (pp.579~583). Champaign, IL:Human Kinetics.
    Kozak-Collins, K., Burke, E. R., Schoene, R. B. (1994). Sodium bicarbonate ingestion does not improve performance in women cyclist. Medicine and Science in Sports and Exercise, 26(12), 1510~1515.
    Lenney, J. F., George, R. P., Weiss, A. M., Kucera, C. M., Chan, P. W. H., Rinzler, G. S. (1982). Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clinica Chimica Acta, 123, 221~231.
    Linderman, J. K., Gosselink, K. L. (1994). The effect of sodium bicarbonate ingestion on exercise performance. Sports Medicine, 18(2), 75~80.
    Mainwood, G. W., Worsley-Brown, P. (1975). The effect of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. Journal of Physiology, 250, 1~22.
    Mannion, A. F., Jakeman, P. M., Willan, P. L. T. (1995). Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Experimental Physiology, 80, 89~101.
    Mannion, A. F., Jakeman, P. M., Dunnett, M., Harris, R. C., Willan, P. L. T. (1992). Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. European Journal of Applied Physiology, 64, 47~50.
    Martignoni, P., Winnick, T. (1954). Biosynthesis of carnosine and anserine in chick. The Journal of Biological Chemistry, 208, 251~261.
    Maynard, L. M., Boissonneault, G. A., Chow, C. K., Bruckner, G. G. (2001). High levels of dieyary carnosine are associated with increased concentration of carnosine and histidine in rat soleus muscle. Journal of Nutrition, 131(2), 287~90.
    Mckenzie, D. C., Parkhouse, W. S., Rhodes, E. c., Hochochka, P. W., Ovalle, W. K., Mommsen, T. P., Shinn, S. L. (1983). In Knuttgen, H. G., Vogel, J. A., Poortmans, J.(Eds.), Skeletal muscle buffering capacity in elite athletes. Biochemistry of exercise (pp.584~589). Champaign, IL:Human Kinetics.
    Mcnaughton, L. R. (1992). Bicarbonate ingestion:effects of dosage on 60 s cycle ergometry. Journal of Sports Science, 10, 415~423.
    Miller, R. G., Boska, M. D., Moussavi, R. S., Carson, P. J., Weiner, M. W. (1988). 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatique. Journal of Clinical Investigation, 81, 1190~1196.
    Osnes, J. B., Hermansen, L. (1972). Acid-base balance after maximal exercise of short duration. Journal of Applied Physiology, 32(1), 59~63.
    Parkhouse, W. S., Mckenzie, D. C. (1984). Possible contribution of skeletal muscle buffers to enhanced anaerobic performance:a brief review. Medicine and Science in Sports and Exercise, 16(4), 328~338.
    Parkhouse, W. S., Mckenzie, D. C., Hochachka, P. W., Ovalle, W. K. (1985). Buffering capacity of deproteinized human vastus lateralis muscle. Journal of Applied Physiology, 58(1), 14~17.
    Potteiger, J. A., Nickle, G. L., Webster, M. J., Haub, M. D., Palmer, R. J. (1996). Sodium citrate ingestion enhances 30 km cycling performance. International Journal of Sports Medicine, 17(1), 7~11.
    Powers, Scott K., Hoeley, Edward T. (2001). Acid-base balance during exercise. Exercise physiology-theory and application to fitness and performance (pp.211~218). New York:McGraw-Hill.
    Robergs, R. A., & Ghiasvand, F. (2001). A reevaluation of the biochemical causes of skeletal muscle acidosis during intense exercise. Medicine and Science in Sports and Exercise, 33(5), Supplement abstract 1565.
    Sahlin, K. (1978). Intracellular pH and energy metabolism in skeletal muscle of man. Acta Physiologica Scandinavica Supplementum, 455, 1~56.
    Sewell, D. A., Harris, R. C., Marlin, D. J., Dunnett, M. (1992). Estimation of the carnosine content of different fibre types in the middle gluteal muscle of thoroughbred horse. Journal of Physiology, 455, 447~453.
    Sharp, R. L., Armstrong, L. E., King, D. S., Costill, D. L. (1983). Buffer capacity of blood in trained and untrained males. In Knuttgen, H. G., Vogel, J. A., Poortmans, J.(Eds.), Biochemistry of exercise (pp.595~599). Champaign, IL : Human Kinetics.
    Skulachev, V. P. (2000). Biological role of carnoisine in functioning of excitable tissues. Biochemistry(Moscow), 65(7), 749~750.
    Smith, E. C. B. (1938). The buffering of muscle in rigor; protein, phosphate and carnosine. Journal of Physiology, 92, 336~343.
    Stuerenburg, H. J. (2000). The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry(Moscow), 65(7), 862~865.
    Tamaki, N., Tsunemori, F., Wakabayashi, M., Hama, T. (1977). Effect of histidine-free and –excess diets on anserine and carnosine contents in rat gastrcnemius muscle. Journal of Nutritional Science and Vitaminology(Tokyo), 23(4), 331~40.
    Tamaki, N., Funatsuka, A., Fujimoto, S. (1984). The utilization of carnosine in rats fed on a histidine-Free diet and its effect on levels of tissue histidine and carnosine. Journal of Nutritional Science and Vitaminology(Tokyo), 30, 541~551.
    Tanaka, M. (1995). Effect of a training session of endurance running on anserine and carnosine contents in fast and slow muscles of young rats. The Japanese Journal of Physiology, 45, 659~666.
    Tropp, B. E. (1997). Amino acids, peptides, and polypeptide chains. Biochemistry-concepts and applications (pp.104~106). USA : Brooks/Cole.
    Welch, H. G. (1987). Effects of hypoxia and hyperoxia on human performance. In Pandolf, K. B.(Ed.), Exercise and sports sciences reviews, 15, 191~222. New York : Macmillan.
    Williams, M. H. (1977). Sodium bicarbonate (alkaline salts). The ergogenics edge-pushing the limits of sports performance (pp.254~257). Champaign, IL:Human Kinetics.
    Wilmore, J.H., Costill, D.L. (1999). Physiology of sport and exercise (pp.49~150). Champaign, IL : Human Kinetics.

    QR CODE