研究生: |
郭念芸 Kuo, Nien-Yun |
---|---|
論文名稱: |
飛秒脈衝雷射技術在牙周病診斷及植入醫材表面改質之應用研究 Application of Femtosecond Pulsed Laser Technology in Periodontal Disease Diagnosis and Surface Modification of Medical Implants |
指導教授: |
張天立
Chang, Tien-Li |
口試委員: |
張天立
Chang, Tien-Li 李青澔 Li, Ching-Hao 王建評 Wang, Chien-Ping 劉正哲 Liu, Chen-Che |
口試日期: | 2024/07/17 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 飛秒雷射 、Ti6Al4V 、抗菌元件 、細菌檢測元件 、金奈米粒子 |
英文關鍵詞: | Femtosecond laser, Ti6Al4V, Antibacterial component, Bacterial detection component, Gold nanoparticles |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401736 |
論文種類: | 學術論文 |
相關次數: | 點閱:154 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] B. Guo, J. Sun, Y. Hua, N. Zhan, J. Jia, K. Chu, Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications, Nanomanufacturing and Metrology, 3 (2020) 26-67.
[2] H. Sun, J. Li, M. Liu, D. Yang, F. Li, A review of effects of femtosecond laser parameters on metal surface properties, Coatings, 12 (2022) 1596.
[3] C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining, Biomaterials, 24 (2003) 701-710.
[4] R. E. Jung, B. E. Pjetursson, R. Glauser, A. Zembic, M. Zwahlen, N. P. Lang, A systematic review of the 5‐year survival and complication rates of implant‐supported single crowns, Clinical oral implants research, 19 (2008) 119-130.
[5] N. U. Zitzmann, T. Berglundh, Definition and prevalence of peri‐implant diseases, Journal of clinical periodontology, 35 (2008) 286-291.
[6] S. Papa, M. Maalouf, P. Claudel, X. Sedao, Y. Di Maio, H. Hamzeh-Cognasse, M. Thomas, A. Guignandon, V. Dumas, Key topographic parameters driving surface adhesion of Porphyromonas gingivalis, Scientific reports, 13 (2023) 15893.
[7] K. Y. How, K. P. Song, K. G. Chan, Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line, Frontiers in microbiology, 7 (2016) 53.
[8] S. R. Torati, B. Hanson, M. Shinde, G. Slaughter, Gold Deposited Laser-Induced Graphene Electrode for Detection of miRNA-141, IEEE Sensors Journal, 24 (2023) 2154-2161.
[9] V. Parmar, A. Kumar, M. Mani Sankar, S. Datta, G. Vijaya Prakash, S. Mohanty, D. Kalyanasundaram, Oxidation facilitated antimicrobial ability of laser micro-textured titanium alloy against gram-positive Staphylococcus aureus for biomedical applications, Journal of Laser Applications, 30 (2018).
[10] S. Shaikh, S. Kedia, D. Singh, M. Subramanian, S. Sinha, Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance, Journal of Laser Applications, 31 (2019).
[11] C. J. Yang, X. S. Mei, Y. L. Tian, D. W. Zhang, Y. Li, X. P. Liu, Modification of wettability property of titanium by laser texturing, The International Journal of Advanced Manufacturing Technology, 87 (2016) 1663-1670.
[12] Metal Implants and Medical Alloys Market, By Type (Titanium, Cobalt Chrome, and Other Metals), By Application (Cardiovascular Applications, Dental Applications, and Other Applications), By End-Use, and By Region Forecast to 2032, Emergen Research, 2023 250. (https://www.emergenresearch.com/industry-report/metal-implants-and-medical-alloys-market)
[13] G. Schnell, U. Duenow, H. Seitz, Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces, Materials, 13 (2020) 969.
[14] M. Di Giulio, T. Traini, B. Sinjari, A. Nostro, S. Caputi, L. Cellini, Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study, Clinical oral implants research, 27 (2016) 918-925.
[15] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & engineering chemistry, 28 (1936) 988-994.
[16] A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40 (1944) 546-551.
[17] V. M. Pv, V. K. Kudapa, Recent developments in usage of fluorine-free nano structured materials in oil-water separation: A review, Surfaces and Interfaces, 27 (2021) 101455.
[18] S. Hajihosseini, N. Nasirizadeh, M. S. Hejazi, P. Yaghmaei, A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode, Materials Science and Engineering: C, 61 (2016) 506-515.
[19] Z. Wan, M. Umer, M. Lobino, D. Thiel, N.-T. Nguyen, A. Trinchi, M. J. Shiddiky, Y. Gao, Q. Li, Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection, Carbon, 163 (2020) 385-394.
[20] R. R. Soares, R. G. Hjort, C. C. Pola, K. Parate, E. L. Reis, N. F. Soares, E. S. McLamore, J. C. Claussen, C. L. Gomes, Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth, Acs Sensors, 5 (2020) 1900-1911.
[21] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, Laser-induced porous graphene films from commercial polymers, Nature communications, 5 (2014) 5714.
[22] C. Fenzl, P. Nayak, T. Hirsch, O. S. Wolfbeis, H. N. Alshareef, A. J. Baeumner, Laser-scribed graphene electrodes for aptamer-based biosensing, Acs Sensors, 2 (2017) 616-620.
[23] S. Luo, P. T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays, Carbon, 96 (2016) 522-531.
[24] S. Sharma, S. K. Ganeshan, P. K. Pattnaik, S. Kanungo, K. N. Chappanda, Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine, Materials Letters, 262 (2020) 127150.
[25] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, Ablation-cooled material removal with ultrafast bursts of pulses, Nature, 537 (2016) 84-88.
[26] L. Jiang, H. L. Tsai, Repeatable nanostructures in dielectrics by femtosecond laser pulse trains, Applied Physics Letters, 87 (2005).
[27] Z. Lin, M. Hong, Femtosecond laser precision engineering: from micron, submicron, to nanoscale, Ultrafast Science, 2021 (2021).
[28] S. Shin, J. G. Hur, J. K. Park, D. H. Kim, Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: Influences of laser fluence and pulse repetition rate on processing quality, Optics & Laser Technology, 134 (2021) 106618.
[29] G. Yuan, Y. Liu, C. V. Ngo, C. L. Guo, Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing, Optics Express, 28 (2020) 35636-35650.
[30] T. S. D. Le, Y. A. Lee, H. K. Nam, K. Y. Jang, D. Yang, B. Kim, K. Yim, S. W. Kim, H. Yoon, Y. J. Kim, Green flexible graphene–inorganic‐hybrid micro‐supercapacitors made of fallen leaves enabled by ultrafast laser pulses, Advanced Functional Materials, 32 (2022) 2107768.
[31] J. E. George, V. R. Rodrigues, D. Mathur, S. Chidangil, S. D. George, Self-cleaning superhydrophobic surfaces with underwater superaerophobicity, Materials & Design, 100 (2016) 8-18.
[32] H. Ananth, V. Kundapur, H. Mohammed, M. Anand, G. Amarnath, S. Mankar, A review on biomaterials in dental implantology, International journal of biomedical science: IJBS, 11 (2015) 113.
[33] R. Bammidi, K. S. Prasad, Ti-6AL-4V as Dental Implant, EAS Journal of Dentistry and Oral Medicine, 7 (2020) 14-18.
[34] C. Guo, M. Zhang, J. Hu, Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification, Optics & Laser Technology, 148 (2022) 107728.
[35] H. Exir, A. Weck, Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium, Surface and Coatings Technology, 378 (2019) 124931.
[36] Z. Yang, X. Liu, Y. Tian, Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure, Journal of colloid and interface science, 533 (2019) 268-277.
[37] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead, Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics, Colloids and surfaces B: biointerfaces, 160 (2017) 688-696.
[38] S. J. Park, T. A. Taton, C. A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes, Science, 295 (2002) 1503-1506.
[39] A. R. Cardoso, A. C. Marques, L. Santos, A. F. Carvalho, F. M. Costa, R. Martins, M. G. F. Sales, E. Fortunato, Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes, Biosensors and Bioelectronics, 124 (2019) 167-175.
[40] M. Bahri, M. A. Elaguech, S. Nasraoui, K. Djebbi, O. Kanoun, P. Qin, C. Tlili, D. Wang, Laser-Induced graphene electrodes for highly sensitive detection of DNA hybridization via consecutive cytosines (polyC)-DNA-based electrochemical biosensors, Microchemical Journal, 185 (2023) 108208.
[41] J. Yong, F. Chen, Q. Yang, X. Hou, Femtosecond laser controlled wettability of solid surfaces, Soft Matter, 11 (2015) 8897-8906.
[42] M. P. Chávez Díaz, R. M. Luna Sánchez, J. Vazquez Arenas, L. Lartundo Rojas, J. M. Hallen, R. Cabrera Sierra, XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank’s solution, Journal of Solid State Electrochemistry, 23 (2019) 3187-3196.
[43] G. Schnell, C. Polley, S. Bartling, H. Seitz, Effect of chemical solvents on the wetting behavior over time of femtosecond laser structured Ti6Al4V surfaces, Nanomaterials, 10 (2020) 1241.
[44] G. Beamson, D. Briggs, High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules, Molecular Physics, 76 (1992) 919-936.
[45] J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, Wettability conversion of ultrafast laser structured copper surface, Journal of Laser Applications, 27 (2015).
[46] D. Huerta Murillo, A. García Girón, J. M. Romano, J. T. Cardoso, F. Cordovilla, M. Walker, S. Dimov, J. L. Ocaña, Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy, Applied Surface Science, 463 (2019) 838-846.