簡易檢索 / 詳目顯示

研究生: 郭念芸
Kuo, Nien-Yun
論文名稱: 飛秒脈衝雷射技術在牙周病診斷及植入醫材表面改質之應用研究
Application of Femtosecond Pulsed Laser Technology in Periodontal Disease Diagnosis and Surface Modification of Medical Implants
指導教授: 張天立
Chang, Tien-Li
口試委員: 張天立
Chang, Tien-Li
李青澔
Li, Ching-Hao
王建評
Wang, Chien-Ping
劉正哲
Liu, Chen-Che
口試日期: 2024/07/17
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 90
中文關鍵詞: 飛秒雷射Ti6Al4V抗菌元件細菌檢測元件金奈米粒子
英文關鍵詞: Femtosecond laser, Ti6Al4V, Antibacterial component, Bacterial detection component, Gold nanoparticles
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401736
論文種類: 學術論文
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 致謝 iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 飛秒雷射簡介 1 1.2 研究動機與目的 1 1.3 鈦合金於生醫應用 2 1.4 水滴接觸角 4 1.4.1 Wenzel 模型 5 1.4.2 Cassie-Baxter 模型 5 1.5 核酸雜合反應(Hybridization) 6 1.6 雷射誘導石墨烯(Laser induced graphene) 7 1.7 三電極系統檢測原理(Thouree-electrode system) 9 第二章 文獻回顧 11 2.1 飛秒雷射製程介紹 11 2.1.1 飛秒雷射的製程 11 2.1.2 飛秒雷射製程之應用 20 2.2 Ti6Al4V材料特性 25 2.2.1 Ti6Al4V材料於植牙之應用 25 2.2.2 Ti6Al4V 製成微結構之親疏水變化 27 2.2.3 Ti6Al4V親疏水表面對抗菌度之影響 32 2.3 雷射誘導石墨烯介紹 36 2.3.1 雷射誘導石墨烯(Laser Induced Graphene, LIG)應用 36 2.3.2 生物感測器原理 38 2.3.3 聚醯亞胺(Polyimide, PI)雷射還原石墨烯(LIG)之生物感測器應用 39 第三章 研究方法與設計 44 3.1 實驗設計 44 3.2 飛秒脈衝雷射製程 46 3.2.1 雷射剝離閾值 48 3.3 Ti6Al4V雷射製程抗菌元件設計 49 3.3.1 微結構對親疏水影響 50 3.4 Pg菌檢測元件設計 52 3.5 抗菌元件之Pg菌製備 53 3.5.1 Ti6Al4V上的Pg菌培養 54 3.5.2 PI檢測元件的Pg菌檢測 55 3.5.3 元件電性檢測Pg 56 3.6 實驗與量測設備 57 第四章 結果與討論 58 4.1 飛秒雷射對Ti6Al4V雷射製成陣列微結構 58 4.1.1 雷射之剝離閾值 58 4.1.2 雷射製程後之熱影響 59 4.1.3 陣列微結構之表面形貌與材料分析 60 4.1.4 粗糙度與潤濕性變化 66 4.2 飛秒雷射對PI雷射誘導誘導石墨烯(LIG) 71 4.2.1 PI雷射之閾值 72 4.2.2 LIG之表面形貌與材料分析 73 4.2.4 LIG表面電極修飾金奈米粒子(AuNPs) 74 4.3 Pg菌診斷元件 75 4.3.1 潤濕性對抗菌程度之影響 76 4.3.2 Pg菌之檢測元件電性變化 80 第五章 結論與未來展望 83 5.1 結論 83 5.2 未來展望 84 參考文獻 86

    [1] B. Guo, J. Sun, Y. Hua, N. Zhan, J. Jia, K. Chu, Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications, Nanomanufacturing and Metrology, 3 (2020) 26-67.
    [2] H. Sun, J. Li, M. Liu, D. Yang, F. Li, A review of effects of femtosecond laser parameters on metal surface properties, Coatings, 12 (2022) 1596.
    [3] C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining, Biomaterials, 24 (2003) 701-710.
    [4] R. E. Jung, B. E. Pjetursson, R. Glauser, A. Zembic, M. Zwahlen, N. P. Lang, A systematic review of the 5‐year survival and complication rates of implant‐supported single crowns, Clinical oral implants research, 19 (2008) 119-130.
    [5] N. U. Zitzmann, T. Berglundh, Definition and prevalence of peri‐implant diseases, Journal of clinical periodontology, 35 (2008) 286-291.
    [6] S. Papa, M. Maalouf, P. Claudel, X. Sedao, Y. Di Maio, H. Hamzeh-Cognasse, M. Thomas, A. Guignandon, V. Dumas, Key topographic parameters driving surface adhesion of Porphyromonas gingivalis, Scientific reports, 13 (2023) 15893.
    [7] K. Y. How, K. P. Song, K. G. Chan, Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line, Frontiers in microbiology, 7 (2016) 53.
    [8] S. R. Torati, B. Hanson, M. Shinde, G. Slaughter, Gold Deposited Laser-Induced Graphene Electrode for Detection of miRNA-141, IEEE Sensors Journal, 24 (2023) 2154-2161.
    [9] V. Parmar, A. Kumar, M. Mani Sankar, S. Datta, G. Vijaya Prakash, S. Mohanty, D. Kalyanasundaram, Oxidation facilitated antimicrobial ability of laser micro-textured titanium alloy against gram-positive Staphylococcus aureus for biomedical applications, Journal of Laser Applications, 30 (2018).
    [10] S. Shaikh, S. Kedia, D. Singh, M. Subramanian, S. Sinha, Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance, Journal of Laser Applications, 31 (2019).
    [11] C. J. Yang, X. S. Mei, Y. L. Tian, D. W. Zhang, Y. Li, X. P. Liu, Modification of wettability property of titanium by laser texturing, The International Journal of Advanced Manufacturing Technology, 87 (2016) 1663-1670.
    [12] Metal Implants and Medical Alloys Market, By Type (Titanium, Cobalt Chrome, and Other Metals), By Application (Cardiovascular Applications, Dental Applications, and Other Applications), By End-Use, and By Region Forecast to 2032, Emergen Research, 2023 250. (https://www.emergenresearch.com/industry-report/metal-implants-and-medical-alloys-market)
    [13] G. Schnell, U. Duenow, H. Seitz, Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces, Materials, 13 (2020) 969.
    [14] M. Di Giulio, T. Traini, B. Sinjari, A. Nostro, S. Caputi, L. Cellini, Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study, Clinical oral implants research, 27 (2016) 918-925.
    [15] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & engineering chemistry, 28 (1936) 988-994.
    [16] A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40 (1944) 546-551.
    [17] V. M. Pv, V. K. Kudapa, Recent developments in usage of fluorine-free nano structured materials in oil-water separation: A review, Surfaces and Interfaces, 27 (2021) 101455.
    [18] S. Hajihosseini, N. Nasirizadeh, M. S. Hejazi, P. Yaghmaei, A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode, Materials Science and Engineering: C, 61 (2016) 506-515.
    [19] Z. Wan, M. Umer, M. Lobino, D. Thiel, N.-T. Nguyen, A. Trinchi, M. J. Shiddiky, Y. Gao, Q. Li, Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection, Carbon, 163 (2020) 385-394.
    [20] R. R. Soares, R. G. Hjort, C. C. Pola, K. Parate, E. L. Reis, N. F. Soares, E. S. McLamore, J. C. Claussen, C. L. Gomes, Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth, Acs Sensors, 5 (2020) 1900-1911.
    [21] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, Laser-induced porous graphene films from commercial polymers, Nature communications, 5 (2014) 5714.
    [22] C. Fenzl, P. Nayak, T. Hirsch, O. S. Wolfbeis, H. N. Alshareef, A. J. Baeumner, Laser-scribed graphene electrodes for aptamer-based biosensing, Acs Sensors, 2 (2017) 616-620.
    [23] S. Luo, P. T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays, Carbon, 96 (2016) 522-531.
    [24] S. Sharma, S. K. Ganeshan, P. K. Pattnaik, S. Kanungo, K. N. Chappanda, Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine, Materials Letters, 262 (2020) 127150.
    [25] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, Ablation-cooled material removal with ultrafast bursts of pulses, Nature, 537 (2016) 84-88.
    [26] L. Jiang, H. L. Tsai, Repeatable nanostructures in dielectrics by femtosecond laser pulse trains, Applied Physics Letters, 87 (2005).
    [27] Z. Lin, M. Hong, Femtosecond laser precision engineering: from micron, submicron, to nanoscale, Ultrafast Science, 2021 (2021).
    [28] S. Shin, J. G. Hur, J. K. Park, D. H. Kim, Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: Influences of laser fluence and pulse repetition rate on processing quality, Optics & Laser Technology, 134 (2021) 106618.
    [29] G. Yuan, Y. Liu, C. V. Ngo, C. L. Guo, Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing, Optics Express, 28 (2020) 35636-35650.
    [30] T. S. D. Le, Y. A. Lee, H. K. Nam, K. Y. Jang, D. Yang, B. Kim, K. Yim, S. W. Kim, H. Yoon, Y. J. Kim, Green flexible graphene–inorganic‐hybrid micro‐supercapacitors made of fallen leaves enabled by ultrafast laser pulses, Advanced Functional Materials, 32 (2022) 2107768.
    [31] J. E. George, V. R. Rodrigues, D. Mathur, S. Chidangil, S. D. George, Self-cleaning superhydrophobic surfaces with underwater superaerophobicity, Materials & Design, 100 (2016) 8-18.
    [32] H. Ananth, V. Kundapur, H. Mohammed, M. Anand, G. Amarnath, S. Mankar, A review on biomaterials in dental implantology, International journal of biomedical science: IJBS, 11 (2015) 113.
    [33] R. Bammidi, K. S. Prasad, Ti-6AL-4V as Dental Implant, EAS Journal of Dentistry and Oral Medicine, 7 (2020) 14-18.
    [34] C. Guo, M. Zhang, J. Hu, Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification, Optics & Laser Technology, 148 (2022) 107728.
    [35] H. Exir, A. Weck, Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium, Surface and Coatings Technology, 378 (2019) 124931.
    [36] Z. Yang, X. Liu, Y. Tian, Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure, Journal of colloid and interface science, 533 (2019) 268-277.
    [37] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead, Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics, Colloids and surfaces B: biointerfaces, 160 (2017) 688-696.
    [38] S. J. Park, T. A. Taton, C. A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes, Science, 295 (2002) 1503-1506.
    [39] A. R. Cardoso, A. C. Marques, L. Santos, A. F. Carvalho, F. M. Costa, R. Martins, M. G. F. Sales, E. Fortunato, Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes, Biosensors and Bioelectronics, 124 (2019) 167-175.
    [40] M. Bahri, M. A. Elaguech, S. Nasraoui, K. Djebbi, O. Kanoun, P. Qin, C. Tlili, D. Wang, Laser-Induced graphene electrodes for highly sensitive detection of DNA hybridization via consecutive cytosines (polyC)-DNA-based electrochemical biosensors, Microchemical Journal, 185 (2023) 108208.
    [41] J. Yong, F. Chen, Q. Yang, X. Hou, Femtosecond laser controlled wettability of solid surfaces, Soft Matter, 11 (2015) 8897-8906.
    [42] M. P. Chávez Díaz, R. M. Luna Sánchez, J. Vazquez Arenas, L. Lartundo Rojas, J. M. Hallen, R. Cabrera Sierra, XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank’s solution, Journal of Solid State Electrochemistry, 23 (2019) 3187-3196.
    [43] G. Schnell, C. Polley, S. Bartling, H. Seitz, Effect of chemical solvents on the wetting behavior over time of femtosecond laser structured Ti6Al4V surfaces, Nanomaterials, 10 (2020) 1241.
    [44] G. Beamson, D. Briggs, High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules, Molecular Physics, 76 (1992) 919-936.
    [45] J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, Wettability conversion of ultrafast laser structured copper surface, Journal of Laser Applications, 27 (2015).
    [46] D. Huerta Murillo, A. García Girón, J. M. Romano, J. T. Cardoso, F. Cordovilla, M. Walker, S. Dimov, J. L. Ocaña, Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy, Applied Surface Science, 463 (2019) 838-846.

    無法下載圖示 本全文未授權公開
    QR CODE