研究生: |
江宗翰 Zong-Han, Jiang |
---|---|
論文名稱: |
智能化精微工具機開發與光學玻璃微結構加工研究 Development of an intellectualized machine tool and research of microstructure machining on optical glass |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 智能化工具機 、光學玻璃 、微加工 、進給速度回饋 |
英文關鍵詞: | intellectualized machine tool, optical glass, micro machining, feed-rate feedback mechanism |
論文種類: | 學術論文 |
相關次數: | 點閱:291 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學玻璃因為其優良的物理、電子及光學性質因而受到廣泛的應用,如智慧型手機、相機等各種消費型3C產品。光學玻璃雖有上述優秀的特性,不過當進行切削或移除時,往往會產生無法預測的脆性破壞,這是長期困擾著產業界的難題,也是光學玻璃無法更加普及使用的原因。本研究旨在開發一部「智能化精微工具機」,主要目的是針對光學玻璃(BK7)、金剛玻璃(Gorilla glass)及石英(Quartz)等硬脆材料,進行精微切削技術的開發。為避免硬脆材料加工時產生脆裂破壞及微細裂紋,本研究提出一原創概念—在工具機上設計切削阻抗感測裝置,感測切削受力大小,並依受力迅速回授調整切削進給速度,使工具機具類人化回饋機制,以達「智能化(Intellectualization)」設計目的,提升加工品質。透由實驗測試,本研究所提方法,證實能有效保護光學玻璃免於脆性崩裂,並使切削表面粗糙度由Ra 0.099 µm降至Ra 0.056 µm。因為回饋機制的保護,本研究除了在強度極高之金剛玻璃上成形一深度0.7 mm的條狀溝槽,亦成功在石英玻璃上成形一高度0.3 mm的微型金字塔。相較於設備成本高昂的超音波工具機,本研究開發之工具機具容易控制且低成本的優點,深具市場競爭力。
Optical glass is widely applied in smart-phones, digital cameras and other consumer-oriented electronic products because of the excellent physical, electronic and optical properties. However, it is difficult in material removal resulting from an unpredictable brittle fracture. Brittle fracture such optical glass cannot thus be employed extensively. The primary purpose of the thesis is to develop an intellectualized machine tool and using the finished machine tool to fabricate microstructure on optical glass as BK7, gorilla glass and quartz. To avoid brittle fracture damage and micro cracks, a sensor (feedback) mechanism made with a three-axis load-cell constantly detects the drilling force is proposed to give real-time feedback to regulate the feed-rate. Grinding-drilling is applied whereby the diamond tool slowly mills into the glass grinding layer by layer. By applying the human-like feedback mechanism, the machine tool can achieve an intellectualized machining and improve the processing quality. Experimental results demonstrate that the designed feedback mechanism can provide an effective protection against abrupt cutting force. The roughness of grinding surface can be accomplished from Ra 0.099 µm down to Ra 0.056 µm. A precision bar-shaped groove with 0.7 mm in depth and a micro tower with 0.3 mm in height can be finished on a toughened gorilla glass and quartz, respectively. Compared to commercial machine tool with ultrasonic vibration-assisted, this development is simple and cost-effective.
[1]E Kussul, T Baidyk, L Ruiz-Huerta, A Caballero-Ruiz, G Velasco and L Kasatkina, Development of micromachine tool prototypes for microfactories, Journal of Micromechanics and Microengineering, Vol.12, pp.795-812, 2002
[2]H. Sumiya, T. Irifune, Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion, Diamond & Related Materials, Vol.13, pp.1771-1776, 2004
[3]International Data Corporation, http://www.idc.com
[4]M. Arif, M. Rahman and Y. S. Wong, Ultraprecision ductile mode machining of glass by micromilling process, Journal of Manufacturing Process, Vol.13, pp.50-59, 2011
[5]B. Yang, X. Shen and S. Lei, Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics, International Journal of Machine Tools & Manufacture, Vol.49, pp.344-350, 2009
[6]Z.J. Pei, P.M. Ferreira, Modeling of ductile-mode material removal in rotary ultrasonic machining, International Journal of Machine Tools & Manufacture, Vol.38, pp.1399-1418, 1998
[7]G. Hu, F.Z. Fang and X.T. Hu, Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials, International Journal of Machine Tools & Manufacture, Vol.50, pp.303-307, 2010
[8]C. Nath, G.C. Lim and H.Y. Zheng, Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics, Ultrasonics, Vol.52, pp.605-613, 2012
[9]B. Denkena, T. Friemuth, M. Reichstein and H.K. To ̈nshoff, Potentials of different process kinematics in micro grinding, CIRP Annals—Manufacturing Technology, Vol.52, pp.463–466, 2003
[10]S. Melkote, M. Kumar, F. Hashimoto and G. Lahoti, Laser assisted micro-milling of hard-to-machine materials, CIRP Annals - Manufacturing Technology, Vol.58, pp.45-48, 2009
[11]B. Yang, X. Shen and S. Lei, Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics, International Journal of Machine Tools & Manufacture, Vol.49, pp.344-350, 2009
[12]R Singh, S. N Melkote, Characterization of a Hybrid Laser-assisted Mechanical Micromachining (LAMM) Process for a Difficult-to-machine Material, International Journal of Machine Tools and Manufacture, Vol.47, pp.1139-1150, 2007
[13]B. Bhattacharyya, B.N. Doloi and S.K. Sorkhel, Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials, Journal of Materials Processing Technology, Vol.95, pp.145-154, 1999
[14] R. Wu ̈thrich, V. Fascio, Machining of non-conducting materials using electrochemical discharge phenomenon-an overview, International Journal of Machine Tools & Manufacture, Vol.45, pp.1095-1108, 2005
[15]X. D. Cao, B. H. Kim and C. N. Chu, Micro-structuring of glass with features less than 100μm by electrochemicaln discharge machining, Precision Engineering, vol.33, pp.459-465, 2009
[16]M. S. Han, B. K. Min and S. J. Lee, Micro-electrochenical discharge cutting of glass using a surface-textured tool, CIRP Journal of Manufacturing Science and Technology, Vol.4, pp.362-369, 2011
[17]M. Arif, M. Rahman and Y. S. Wong, Ultraprecision ductile mode machining of glass by micromilling process, Journal of Manufacturing Process, Vol.13, pp.50-59, 2011
[18]W.S. Blackley, R.O. Scattergood, Ductile regime model for diamond turning of brittle materials, Precision Engineering, Vol.13, pp.95-103, 1991
[19]C. J Morgan, R R. Vallance and E. R Marsh, Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining, Journal of micromenhanics and microengineering, vol.14, pp.1687-1692, 2004
[20]T. Ono, T. Matsumura, Influence of tool inclination on brittle fracture in glass cutting with ball end mills, Journal of Material Processing Technology, Vol.202, pp.61-69, 2008
[21]陳偉恩,含硼聚晶鑽石材料最新研究之探討,碩士論文,華梵大學,機電工程學系,2010
[22]K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka and T. Uematsu, Development of new PCD made up of boron doped diamond particles and its machinability by EDM, Advanced Materials Research, Vol.76-78, pp.684-689, 2009
[23]張智賢,桌上型雙主軸超精微CNC工具機開發與細胞鏡檢模仁製作研究,碩士論文,國立臺灣師範大學,機電科技學系,2011
[24]A. Perveen, M.P. Jahan, M. Rahman and Y.S. Wong, A study on microgrinding of brittle and difficult-to-cut glasses using on-machine fabricated poly crystalline diamond (PCD) tool, Journal of Material Processing Technology, Vol.212, pp. 580-593, 2011
[25]陳政雄,智能化工具機技術,機械月刊,第三十四卷,第三期,第66-72頁,2008
[26]T. Matsumura, T. Hiramatsu and T. Shirakashi, A study on cutting force in the milling process of glass, Journal of Manufacturing Process, vol.7, No.2, pp.102-108, 2005
[27]C. Andersson, M. Andersson and J. E. Ståhl, Experimental studies of cutting force variation in face milling, International Journal of Machine Tools & Manufacture, Vol.51, pp.67-76, 2011
[28]M. Arif, M. Rahman and Y. S. Wong, An experimental investigation into micro ball end-milling of silicon, Journal of Manufacturing Processes, Vol.14, pp.52-61, 2011
[29]B.K.A. Ngoi, P.S. Sreejith, Ductile Regime Finish Machining – A Review, The International Journal of Advanced Manufacturing Technology, Vol.16, pp.547-550, 2000
[30]廖運炫,放電加工之發展趨勢與研究現況,機械月刊,Vol.301,pp.374-387,2000
[31]慶鴻機電工業股份有限公司,線切割機加工資料手冊,H版,2-1~2-3,2007
[32]機械技術雜誌編輯部,二十一世紀的顯學微機電系統(四)-為放電精密加工,機械技術雜誌,pp.220-222,2000
[33]陳信文,單晶、鑽石與奈米材料,科學發展,第355期,pp.34-37,2002
[34]劉傳璽、陳進來,半導體元件物理與製程:理論與實務,pp.8-11,二版,五南圖書,2007
[35]FACT, BDPCD EDMABLE, FINE ABRASIVES TAIWAN CO., LTD, 2012, http://www.factdiamond.com/index.htm
[36]G.M. Ma, C.R. Li, J. Jiang, Y.T. Luo and Y.C. Cheng, A novel optical load cell used in icing monitoring on overhead transmission lines, Cold Regions Science and Technology, Vol.42, pp.67-72, 2012
[37]南樺電子報,Load cell荷重元產品及動作原理介紹,Vol.186,2011, http://cht.nahua.com.tw/epaper/2011/186/
[38]王威力、廖文輝、曾吉村, 荷重元工作原理探討-使用COMSOL, Excerpt from the proceedings of the COMSOL Users Conference, 2007.
[39]KYOWA, How strain gages work, Strain Gage Bonding Manual, pp.1-8, 2011
[40]Joe Ho, 高速主軸之技術與發展現況, 2008
[41]NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, pp.2-13,2008
[42]D. Zipperian, Polycrystalline Diamond, PACE Technologies, Vol.2, issue 1, 2003
[43]Material property data, Diamond, Polycrystalline, MatWeb, http://www.matweb.com
[44]H.S. Lim, K. Fathima, A. S. Kumar and M. Rahman, A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding, International Journal of Machine Tools & Manufacture, Vol.42, pp.935-943, 2002
[45]L.Calvez, M. Rozé, H.L.Ma, J.C. Sangleboeuf, J.P. Guin and X.H.Zhang, Strengthening of chalco-halide glasses by ion exchange, Journal of Non-oxide and Photonic Glasses, Vol.1, pp.30-37, 2009
[46]Corning Incorporated, CORNING GORILLA GLASS, http://www.corninggorillaglass.com/
[47]國立臺灣師範大學機電科技學系,掃描式電子顯微鏡SEM參考資料,2004
[48]Major Instruments, LEICA Confocal Laser Scanning Microscope Technical & Application, Major Instruments Co., Ltd., 2000
[49]KEYENCE Corporation, http://www.digitalmicroscope.com
[50]國立台灣師範大學機電科技學系,拉曼光譜儀分析技術講習班,2007
[51]HORIBA Scientific, http://www.horiba.com
[52]NSK, Precision Machinery & Parts, NSK Ltds., pp.10
[53]Aerotech Inc., http://www.aerotech.com
[54]廖運炫、李忠玲、楊益群,CNC工具機之顫振抑制策略,機械工業雜誌:348期,pp.81-94,2012
[55]AEROTECH inc., THE UNIDEX 500 MOTION CONTROLLER AND WINDOWS SOFTWARE, OPERATION & TECHNICAL MANUAL, Version 1.3, pp.6-1, 2000
[56]李阿卻,切削刀具學,全華科技圖書股份有限公司,pp.278-283,1990
[57]V.P. Astakhov, J.P. Davim, Tools (geometry and material) and tool wear, Chapter 2, Machining: Fundamentals and Recent Advances, Springer, London, ISBN: 978-1-84800-212-8, pp.37-38, 2008
[58]石油情報出版社, http://www.oil.net.tw
[59]WD-40 company, Safety Data Sheet, 2010