簡易檢索 / 詳目顯示

研究生: 黃乾座
Chen Jso Huang
論文名稱: 以共振二光子游離及質量解析臨界游離光譜術研究間位甲氧基苯胺與鄰位甲氧基苯胺之分子特性
Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline
指導教授: 曾文碧
Tzeng, Wen-Bih
林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 88
中文關鍵詞: 共振雙光子游離光譜術質量解析臨界游離光譜術間位甲氧基苯胺鄰位甲氧基苯胺游離能激發態振動光譜離子態振動光譜
論文種類: 學術論文
相關次數: 點閱:227下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    我們應用高解析度共振雙光子游離與質量解析臨界游離光譜術來探討間位與鄰位甲氧基苯胺的分子特性,精準地量測第一電子躍遷能和游離能,並記錄這些分子的 S1電子激發態和D0離子基態的振動光譜。間位甲氧基苯胺有兩種轉動異構物,cis構形的第一電子躍遷能測得34308  2 cm-1、而trans構形則為34495  2 cm-1,它們的游離能分別為59983  5 cm-1和60879  5 cm-1。鄰位甲氧基苯胺的第一電子躍遷能為33875  2 cm-1,而它的游離能則是58678  5 cm-1。我們也進行量子化學及密度泛函數理論計算,並且以所測得的光譜和對位甲氧基苯胺及其他苯胺衍生物的實驗數據作比較,結果顯示大部分較為顯著的振動模式都為平面上苯環的振動,而取代基的特性與在苯環上的相關位置皆會對分子的躍遷能、游離能以及振動模式造成影響。

    We applied the high-resolution resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy to study the molecular properties of m-methoxyaniline and o-methoxyaniline. m-Methoxyaniline has two rotamers. The origins of the S1 ← S0 electronic transition (E1’s) of the cis and trans rotamers are measured to be 34308 ± 2 and 34495 ± 2 cm-1 and their corresponding adiabatic ionization energies (IEs) are 59983 ± 5 and 60879 ± 5 cm-1, respetively. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are determined to be 33875 ± 2 and 58678 ± 5 cm-1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S1 and cationic ground D0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline and many aniline derivatives allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH2 and OCH3 substituents. We have also performed the ab initio and density functional calculations to support our experimental findings.

    目錄 中文摘要………………………………………………………………...Ⅰ 英文摘要………………………………………………………………...Ⅱ 目錄……………………………………………………………………...Ⅲ 圖目錄…………………………………………………………………...Ⅴ 表目錄………………………………………………………………….VII 壹、 緒論  一、簡介………………………………………………………………1  二、研究目的…………………………………………………………4 貳、 光譜技術 一、 共振多光子游離光譜術………………………………………..6 二、 質量解析臨界游離光譜術……………………………………12 參、 實驗設備 一、 真空系統………………………………………………………19 二、 游離源與雷射系統……………………………………………29 三、 同步信號收集…………………………………………………34 四、 實驗過程………………………………………………………36 肆、 理論計算 一、 概論……………………………………………………………40 二、 基底函數………………………………………………………43 三、 間位、鄰位甲氧基苯胺理論計算……………………………46 伍、結果 一、 間位甲氧基苯胺的共振多光子游離與質量解析臨界游離光譜………………………………………………………………52 二、 鄰位甲氧基苯胺的共振多光子游離與質量解析臨界游離光譜………………………………………………………………61 陸、結果討論 一、 結構異構物對分子結構的影響………………………………67 二、 結構異構物對分子振動模式的影響…………………………71 三、 結構異構物對電子激發態能量與游離能的影響……………75 柒、結論…………………………………………………………………83 捌、參考文獻……………………………………………………………84 圖目錄 圖一、單色及雙色雙光子游離示意圖…………………………………18 圖二、利用雙色共振雙光子游離術探測粗略游離能的示意圖………19 圖三、質量解析臨界游離光譜術作用機制圖…………………………24 圖四、高主量子數雷德堡態和零動能態示意圖………………………25 圖五、雷德堡態分子軌道示意圖………………………………………26 圖六、飛行時間質譜儀內部構造圖……………………………………34 圖七、實驗設備簡圖……………………………………………………35 圖八、分子束脈衝閥剖面結構示意圖…………………………………36 圖九、染料Rhodamine 590其所配置濃度與其發光範圍曲線圖……39 圖十、Rhodamine 590+ Rhodamine 610混合染料的發光範圍曲線 圖………………………………………………………………..40 圖十一、脈衝/延遲產生器DG-535 與實驗儀器連接圖…………….43 圖十二、質譜轉光譜示意圖……………………………………………46 圖十三、MATI光譜技術實驗操作程序示意圖……………………….47 圖十四、理論計算對於(a)cis、(b)trans m-methoxyaniline的原子編號 方法示意圖…………………………………………………..56 圖十五、理論計算對於o-methoxyaniline的原子編號示意圖………...57 圖十六、o‐Di‐ “light”的振動模式、標定及頻率範圍…………………58 圖十七、m‐Di‐ “light”的振動模式、標定及頻率範圍………………59 圖十八、間位甲氧基苯胺單色共振雙光子游離光譜圖………………64 圖十九、cis間位甲氧基苯胺(a)2C-R2PI光譜(b)via S100的MATI光 譜……………………………………………………………..66 圖二十、trans間位甲氧基苯胺(a)、2C-R2PI光譜 (b)、via S100 (c)、 via S16b1 (d)、via S111 MATI光譜……………………………67 圖二十一、鄰位甲氧基苯胺單色共振雙光子游離光譜圖……………71 圖二十二、鄰位甲氧基苯胺(a)、2C-R2PI光譜 (b)、via S100 (c)、via S1γ(O–CH3) MATI光譜………………………………….73 圖二十三、間甲氧基苯胺C2C3OC(H3)二面角的位能面曲線圖(a)、 D0 state(b)、S0 state……………………………………….77 圖二十四、間甲氧基苯胺的振動模式示意圖。(a)、(b)、(c)各為cis 的6b、1、12的振動模式圖。(d)、(e)、(f)各為trans的6b、1、12的振動模式圖………………………………………..81 圖二十五、cis、trans間甲氧基苯胺位能圖…………………………….89 表目錄 表一、Observed bands in the 1C-R2PI spectrum of m-methoxyaniline and possible assignments…………………………………………….65 表二、Assignment of the observed bands (cm-1) in the MATI spectra of the cis and trans rotamers of m-methoxyaniline………………..68 表三、Observed bands in the 1C-R2PI spectrum of o-methoxyaniline and possible assignments…………………………………………….72 表四、Observed bands (in cm-1) in the MATI spectra of o-methoxyanilinea and possible assignments………………………………………..74 表五、Predicted geometry parameters of the cis and trans rotamers of m-methoxyaniline in the S0 and D0 states from the restricted and unrestricted B3PW91/6-311++G** calculations, respectively….78 表六、Frequencies (in cm-1) of some in-plane ring vibrations observed in the vibronic and cation spectra of m-methoxylaniline in the S1 and D0 states…………………………………………………………82 表七、(a)cis、(b)trans多種計算方法與實驗所得到的間甲氧基苯胺的 激發態能量及游離能的誤差比較。(配合6‐311++G**基底函 數) …............................................................................................87 表八、多種計算方法與實驗所得到的鄰位甲氧基苯胺的激發態能量及 游離能的誤差比較。(配合6‐311++G**基底函數) …………….88 表九、Measured electronic transition and ionization energies (in cm-1) of substituted anilines……………………………………………...90

    捌、參考文獻

    [1].E. W. Schlag, Zeke Spectroscopy, Cambridge University
    Press, Cambridge, U.K,(1998)
    [2].J. Laane, Annu. Rev. Phys. Chem. 45 (1994) 179.
    [3].E. W. Schlag, H. J. Neusser, Acc. Chem. Aoc. 16 (1983) 355.
    [4].A.W. Castleman, Jr., W. B. Tzeng, S. Wei, S. Morgan, J. Chem. Soc.
    Faraday Trans. 86 (1990) 2417.
    [5].D.E. Powers, J.B. Hopkins, R.E Smally, J. Chem. Phys. 72 (1980)
    5721.
    [6].K. Muller-Dethlefs, M. Sander, E. W. Schlag, Chem. Phys. Lett. 112
    (1984) 291.
    [7].L. A. Chewter, M. Sander, K.Muller-Dethlefs, E. W. Schlag, J. Chem. Phys. 86 (1987) 4737.
    [8].L. Zhu, P. M. Johnson, J. Chem. Phys. 94 (1991) 5769.
    [9]. The NIST Chemistry Webbook, http://webbook.nist.gov/, and
    references therein.
    [10].J. L. Lin, W. B. Tzeng, J. Chem. Phys. 115 (2001) 743.
    [11].J. L. Lin, C. L. Huang, W. B. Tzeng, J. Phys. Chem. A 105 (2001) 11455
    [12]. M. Thanneermalai, T. Jeyaraman, C. Sivakumar, A. Gopalan, T.
    Vasudevan, T. C. Wen, Spectrochim. Acta. A 59 (2003) 1937.
    [13]. W. B. Tzeng , J. L. Lin, J. Phys. Chem. A 103 (1999) 8612.
    [14]. J. L. Lin, W. B. Tzeng , Phys. Chem. Chem. Phys. 2 (2000) 3759.
    [15]. J. L. Lin, K. C. Lin, W. B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
    [16]. J. L. Lin, K. C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002)
    6462.
    [17]. S. C. Yang, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 362 (2002)
    19.
    [18]. Y. Xie, H. W. Su, W. B. Tzeng, Chem. Phys. Lett. 304 (2004) 182.
    [19]. Y. Xie, J. L. Lin, W.B. Tzeng, Chem. Phys. 305 (2004) 285.
    [20]. J. Lin, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
    [21]. J. Lin, W. B. Tzeng, Trends in Appl. Spectrosc. 5 (2004) 71.
    [22]. P. Brown, Org. Mass Spectrom. 4 (1970) 519.
    [23]. Eland, J. H. D. Shepherd, P. J. Danby, C. J., Ionization potentials of aromatic molecules determined by analytical interpretation of electron impact data, Z. Naturforsch. 21a (1966) 1580.
    [24].T. G. Dietz, M. A. Duncan, M. G. Liverman, R. E Smalley, J. Chem. Phys. 73 (1980) 4816.
    [25].L. Santos, E. Martinez, B. Ballesteros, J. Snchez, Spectrochim. Acta. A 56 (2000) 1905.
    [26]. S. Yan, L. H. Spangler, J. Chem. Phys. 96 (1992) 4106.
    [27]. X. Q. Tan, D. W. Pratt, J. Chem. Phys. 100 (1994) 7061.
    [28].T. W. Turner, I. A. Jorbory, J. Chem. Phys. 37 (1962) 3007.
    [29].C. E. H. Dessent, K. Muller-Dethlefs, Chem. Rev. 100 (2000) 3999.
    [30].D. Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys.46 (1967) 4995.
    [31].C. Y. Ng, Int. J. Mass Spectrom. 200 (2000) 357.
    [32].K. Kimura, J. Electron Spectrosc. Relat. Phenom. 100 (1999) 273.
    [33].W. A. Chupka, J. Chem. Phys. 98 (1993) 4520.
    [34].M. G. H. Boogaarts, I. Holleman, R. T. Jongma, D. H. Parker, G. Meijer, U. Even, J. Chem. Phys. 104 (1996) 4357.
    [35].M. Lee, M. S. Kim, J. Chem. Phys. 123 (2005) 174310.
    [36].S. Georgive, H. J. Neusser, J. Electron Spectrosc. Relat. Phenom. 142 (2005) 207.
    [37].H. K. Woo, P. Wang, K. C. Lau, X. Xing, C. Y. Ng, J. Chem. Phys. 120 (2004) 1756
    [38].T. Uchimura, H. Kanda, T. Isasaka, Anal. Sci. 19 (2003) 387.
    [39].C. R. C. Wang, C. C. Hsu, W. Y. Liu, W. C. Tsai, and W. B. Tzeng, Rev. Sci. Instrum. 65 (1994) 2776.
    [40].JOSEPH LADISLAS WIZA , Galileo Electro-Optics Corporation, Sturbridge, Massachusetts, U.S.A
    [41]. J. M. Hollas, M. R. Howson, T. Ridley, L. Halonen, Chem. Phys. Lett. 98 (1983) 611.
    [42].W. A. Chupka, J. Chem. Phys. 96 (1993) 4520.
    [43].M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. GAUSSIAN 03, Revision C.02, Gaussian, Inc. Pittsburgh, (2003).
    [44]. C. Uterberg, A. Gerlach, A. Jansen, M. Gerhards, Chem. Phys.304 (2004) 237.
    [45]. Y. Xie, H. Su, and W. B. Tzeng, Chem. Phys. Lett. 394 (2004) 182.
    [46]. Y. Xie, J. L. Lin, and W. B. Tzeng, Chem. Phys. 305 (2004) 285.
    [47]. L. A. Curtiss, P. C. Redferm, K. Raghavachari, J. A. Pople, J. Chem. Phys. 109 (1998) 42.
    [48]. G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred
    Benzene Derivatives, Wiley, New York, 1974.
    [49]. M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem.
    Phys. 108 (1998) 4439.
    [50]. L. Yuan, C. Li, J. L. Lin, S. C. Yang, W. B. Tzeng, Chem. Phys.
    323 (2006) 429.
    [51]. P. G. Farrell and J. Newton, Tetrahedron Lett. 7 (1966) 5517.
    [52].Jeff W. Denault, Guodong Chen, R. Graham Cooks, Int. J. Mass Spectrom. 175 (1998) 205.
    [53]. M. Shinozaki, M. Sakai, S. Yamaguchi, T. Fujioka, M. Fujii, Phys. Chem. Chem. Phys.5 (2003) 5044.
    [54]. S. Ullrich, W. D. Geppert, C. E. H. Dessent, K. Müller-Dethlefs, J. Phys. Chem. A. 104 (2000) 11864.
    [55]. W. B. Tzeng, K. Narayanan, J. Mol. Struct. (Theochem) 434 (1998) 247.
    [56]. J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
    [57]. J. Huang, C. Li, W. B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
    [58]. X. Song, M. Yang, E.R. Davidson, J.P. Reilly, J. Chem. Phys. 99 (1993) 3224.
    [59]. C. Uterberg, A. Gerlach, A. Jansen, M. Gerhards, Chem. Phys. 304 (2004) 237.
    [60]. A. G. Csaszar, G. Fogarasi, Spectrochim. Acta. A 45 (1989) 845.

    QR CODE