研究生: |
吳清麟 Wu, Ching-Lin |
---|---|
論文名稱: |
遠距聯想在創造力形成歷程之運作機制 The Mechanism of Remote Association in the process of Creativity |
指導教授: |
陳學志
Chen, Hsueh-Chih |
學位類別: |
博士 Doctor |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 遠距聯想 、創造力 、功能性磁振造影 、擴散張量成影 、圖形理論分析 |
英文關鍵詞: | Remote association, Creativity, functional Magnetic Resonance Imaging, Diffusion Tensor Imaging, Graph Theoretical Analysis |
論文種類: | 學術論文 |
相關次數: | 點閱:225 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遠距聯想為個體生產創造力的重要元素。Mednick依其連結理論發展遠距聯想測驗以評估此能力,然而過往以此為工具的認知神經科學研究偏重於個體解答時所引發的頓悟經驗,卻未能區辨正確答案之產出係來自遠距聯想或近距聯想,致使目前研究成果未能知悉個體透過遠距聯想產生創意之大腦運作機制。據此,本研究編製符合連結理論之遠距以及近距聯想測驗,分別由功能性與結構性腦影像觀點探究遠距聯想及近距聯想之大腦運作機制。實驗一先透過比較參與者在兩種試題各項行為指標之差異以確認自編工具的效度,結果顯示個體解答遠距聯想試題比近距聯想試題需要更長的時間、其答對率亦較低。實驗二採用功能性磁振造影(fMRI)分別比較參與者在兩組試題正確解題與否的大腦活動,以解析個體藉由遠距聯想與近距聯想產出答案的大腦機制,並進一步透過比較上述兩組的差異以剖析遠距聯想的核心成份。結果發現,遠距聯想產出答案與雙側海馬旁回(PHG)、右側頂下葉(IPL)、雙側顳中回(MTG)、左側顳上回(STG)的活化有關;由近距聯想產生答案則在左側額中回(MFG)、右側額上回(SFG)有較高的激發。,負責語義記憶提取與監控工作記憶的左側顳上回(STG)與右側顳中回(MTG)則與遠距聯想核心成份有密切連結。實驗三改由結構性腦影像觀點,以圖形理論分析擴散張量影像,在控制性別、年齡、智力後,結果指出遠距聯想表現與腦網路全局效率有顯著正相關、與標準化的局部效率及小世界屬性為負相關,並在左側偏中顳中回(MTG)與梭狀回(FG)、右側頂下葉(IPL)、腦島(insula)、中間扣帶(median cingulate)、角回(AG)、距狀裂(calcarine fissure)及頂上回(SPG)等區域與其節點連結效率具顯著正相關;近距聯想表現則與全局效率顯著負相關。整體而言,本研究為國內首次同時由功能性與結構性腦影像觀點探討遠距聯想在創造力生成歷程之大腦運作機制,研究結果提供全面性的創造力生理基礎之實徵證據。
The ability of remote association is important to the creativity. By the idea of Associative Theory, Mednick developed the Remote Associates Test (RAT) to measure the creativity. Among previous studies of problem solving process in cognitive neuroscience approach, it generally emphasized the role of insight but ignored the work of remote association which is essential to solve the problem. Therefore, we know less about the neural correlates of remote association and the creativity. To address this issue, present study develops the remote association and near association tests according to Associative Theory, and investigates the neural correlates of remote and near associations from the perspectives of functional and structural MRI. In study 1, the behavioral indices of subjects in near and remote association tests were compared, result showed that problem solving time was longer, the correct percentage was lower, the correlation with fluency test was higher, and the times of A-HA was fewer in the remote association test than in near one. In study 2, it used the technique of fMRI to record the change of Blood Oxygenation Level-Dependent (BOLD) in two seconds before the problem solved for finding the mechanism of near and remote association and analysis the key of remote association. The result shows that remote association was correlated to the activation of the PHG (Parahippocampal Gyrus), the IPL (inferior parietal lobe), the MTG (middle temporal gyrus), and the STG (superior temporal gyrus); while near association was correlated to the arousal of the MFG (middle frontal gyrus) and the SFG (superior frontal gyrus). Besides, the STG and MTG where are responsible of semantics retrieval and working memory monitoring were found to be highly relevant to the key of remote association. The study 3 was a structural neural image study and analyze the DTI (Diffusion Tensor Imaging) pictures according to the Graph Theoretical Analysis. After controlling the gender, age and intelligence factors of subjects, it shows that remote association was positively correlated to the global efficiency of brain networking but negatively correlated to the standardized local efficiency and the small-worldness. It also shows that remote association was positively correlated to the activation of MTG,FG (fusiform gyrus), IPL, the insula, median cingulate, AG (angular gyrus), calcarine fissure, and SPG (superior parietal gyrus) as well as to the node efficiency of these brain areas. As for the near association, it found to be negatively relevant to the global efficiency. Present study is the pioneer which investigates the neural correlates of remote association in the process of creativity by the perspectives of functional and structural MRI. The study results contribute the overall empirical data for the physiological basis of creativity.
中文文獻
任純慧、陳學志、練竑初、卓淑玲(2004)。創造力測量的輔助工具:中文遠距聯想量表的編製。應用心理研究,21,195-218。
吳清麟(2009)。Mednick聯結理論之檢驗暨中文遠距聯想測驗之解題歷程分析。國立臺灣師範大學教育心理與輔導學系碩士論文。
吳靜吉、陳甫彥、郭俊賢、林偉文、劉士豪、陳玉樺(1998)。新編創造思考測驗研究。教育部輔導工作六年計畫研究報告。
李秀瓊(1999)。高低創造力者在詞彙連結型態上有否差異?──檢驗Mednick的「連結層級」假說。臺灣大學心理學研究所碩士論文。
林緯倫、連韻文、與任純慧(2005)。想得多是想得好的前提嗎?探討發散性思考能力在創意問題解決的角色。中華心理學刊,47,211-227。
邱發忠(2005)。創造力認知運作機制之探究。國立臺灣師範大學教育心理與輔導學系博士論文。
邱發忠、姚妃宴(2010)。調整焦點、目標時間距離對創造力表現的影響。教育心理學報,41,497-520。
張雨霖、陳學志、吳清麟(2012)。中文部件組字遠距聯想測驗之發展與信效度。第十屆海峽兩岸心理與教育測驗學術研討會:江西。
教育部(1998)。國語辭典簡編本編輯資料字詞頻統計報告。
陳怡潔、陳學志、劉浩敏(2002)。中文遠距聯想量表之修訂︰如何避免知識與策略因素之介入。國科會大專生研究計畫。
陳榮華、陳心怡(2002)。魏氏成人智力量表第三版(WAIS-III)中文版。臺北市:中國行為科學社。
陳學志(1999)。認知及認知的自我監控─中文詞聯想常模的建立。國科會研究結案報告。(編號:NSC 87-2418-H-030-006)
陳學志、吳清麟(2014)。以線性對數潛在特質模式探討中文遠距聯想測驗試題成分對於試題難度之影響。創造學刊,5,51-63。
陳學志、吳清麟、陳柏熹、林耀南(2008)。以線性對數潛在特質模式探討中文遠距聯想測驗試題成份對試題難度之影響。中國測驗學會主辦「第八屆海峽兩岸心理與教育測驗學術研討會」發表之論文(雲南)。
陳學志、張瓅勻、邱郁秀、宋曜廷、張國恩(2011)。中文部件組字與形構資料庫之建立及其在識字教學的應用。教育心理學報,43,269-290。
陳學志、彭淑玲、吳清麟(2011)。純頓悟與假頓悟中文遠距聯想測驗之創造力解題歷程。創造學刊,2,25-51。
陳學志、彭淑玲、曾千芝、邱皓政(2008)。藉由眼動追蹤儀器探討平均掃視幅度大小與創造力之關係。教育心理學報,39,127-149。
陳龍根編 (2002)。智力遊戲集錦。香港:讀者文摘社。
黃博聖、陳學志(2003)。新版中文遠距聯想測驗(CRAT)之效度研究與作答認知歷程之分析。國科會大專生研究計畫。(編號:NSC 91-2815-C-003-035-H)
黃博聖、陳學志、劉政宏(2012)。「中文詞彙遠距聯想測驗」之編製及其信、效度報告。測驗學刊,59,581-607。
謝淑蘭(2013)。從心理計時法到心理生理計時法:媒合反應時間與事件關連腦電位波。中華心理學刊,55,255-276。
蘇秀慧(2006)。中文遠距聯想作業之構成要素難度分析暨其與擴散性及頓悟性思考之關聯。國立臺灣師範大學教育心理與輔導學系碩士論文。
西文文獻
Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26, 63-72.
Ansburg, P. & Hill, K. (2003). Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences, 34, 1141-1152.
Ansburg, P. I. (2000). Individual differences in problem solving via insight. Current Psychology, 19(2), 143-146
Ashcraft, M. H. (2002). Cognition. New Jersey: Prentice Hall.
Badzakova-Trajkov, G., Häberling, I. S. & Corballis, M. C. (2011). Magical ideation, creativity, handedness, and cerebral asymmetries: A combined behavioural and fMRI study. Neuropsychologia, 49, 2896– 2903.
Baer, J., & Kaufman, J. C. (2008). Gender differences in creativity. The Journal of Creative Behavior, 19, 143-146.
Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., Wang, J., Xia, M., He, Y., & Zhang, Z. (2012). Topologically Convergent and Divergent Structural Connectivity Patterns between Patients with Remitted Geriatric Depression and Amnestic Mild Cognitive Impairment. Journal of Neuroscience, 32, 4307-4318.
Bamford, N.S., Zhang, H., Schmitz, Y., Wu, N.P., Cepeda, C., Levine, M.S., Schmauss, C., Zakharenko, S.S., Zablow, L., Sulzer, D. (2004). Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron, 42, 653-663.
Bekhtereva, N.P., Starchenko, M.G., Klyucharev, V.A., Vorob’ev, V.A., Pakhomov, S.V., Medvedev, S.V. (2000). Study of the brain organization of creativity: II. Positronemission tomography data. Human Physiology, 26, 516–522.
Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., & Evans, A. C. (2012). The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows. Frontiers in Neuroinformatics, 6, 1-18.
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F. & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125-133.
Benedek, M., Könen, T., Neubauer, A.C., 2012. Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273-281.
Ben-Zur, H. (1989). Automatic and directed search processes in solving simple semanticmemory problems. Memory and Cognition, 17, 617-626.
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537-541.
Booth, J.R., Burman, D.D., Meyer, J.R., Gitelman, D.R., Parrish, T.B., Mesulam, M.M. (2002). Functional anatomy of intra-and cross-modal lexical tasks. Neuroimage 16, 7–22.
Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S., Cohen, J.D. (1999). Conflict monitoring versus selection-for-action in the anterior cingulate cortex. Nature, 402, 179-181.
Bowden, E. M. & Jung-Beeman, M. (2003b). Aha!Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10, 730-737.
Bowden, E. M., & Jung-Beeman, M. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9, 435-440.
Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, and Computers, 35, 634-639.
Bowden, E.M., Jung-Beeman, M., Fleck, J., Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7), 322-28
Brown, J. D., Dutton, K. A. & Cook, K. E. (2001). From the top down: Self-esteem and self-evaluation. Cognition and Emotion, 15, 615-631.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10,186-198.
Bunge, S.A., Ochsner, K.N., Desmond, J.E., Glover, G.H., Gabrieli, J.D.E. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(10), 2074-2086.
Cabeza, R. & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1-47
Carson, S. H., Peterson, J. B., Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. J. Personal. Social Psychology, 85, 499-506
Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., Cohen, J.D. (1998). Anterior cingulate cortex, error detection and the online monitoring of performance. Science, 280, 747-749.
Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980-1987.
Chavez, R.A., Graff-Guerrero, A., Garcia-Reyna, J. C., Vaugier. V., Cruz-Fuentes. C. (2004). Neurobiology of creativity. Journal of Psychiatric and Mental Health, 27, 38-46.
Chávez-Eakle, R.A., Graff-Guerrero, A., García-Reyna, J., Vaugier, V., Cruz-Fuentes, C., 2007. Cerebral blood flow associated with creative performance: a comparative study. Neuroimage 38, 519-528.
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivard, S., Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain, 125, 1054-1069.
Collins, A. M. & Loftus, E. F. (1975). A Spreading-Activation Theory of Semantic Processing. Psychological Review, 82(6), 407-428.
Coney, J. & Serna, P. (1995). Creative thinking from an information processing perspective: a new approach to Mednick’s theory of associative hierarchies. Journal of Creative Behavior, 29, 109-132.
Cousijn, J., Koolschijn, P. C., Zanolie, K., Kleibeuker, S. W., Crone, E. A. (2014). The relation between gray matter morphology and divergent thinking in adolescents and young adults. PLoS One, 9(12), e114619.
Cranford, E. A. & Moss, J. (2011). An fMRI study of insight using compound remote associate problems. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3558-3563). Austin, TX: Cognitive Science Society.
Cranford, E. A. & Moss, J. (2012). Is insight always the same? A protocol analysis of insight in compound remote associate problems. The Journal of Problem Solving, 4(2), 128-153.
Cui Z, Zhong S, Xu P, He Y, Gong G. (2013). PANDA: a pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 21, 7-42.
Dallob, P. I., & Dominowski, R. L. (1993). Erroneous solutions to verbal insight problems: Effects of highlighting critical material. Paper presented at the 73rd annual meeting of the Western Psychological Association, Portland, OR.
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.
Ellamil, M., Dobson, C., Beeman, M. & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 1783-1794.
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734-748.
Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. NeuroImage, 52, 1687-1695.
Fink, A., Koschutnig, K., Benedek, M., Reishofer, G., Ischebeck, A., Elisabeth M. Weiss, E. M. & Ebner, F. (2012). Stimulating Creativity via the Exposure to Other People’s Ideas. Human Brain Mapping 33, 2603–2610.
Fink, G. R., Markowitsch, H. J., Reinkemeier, M., Bruckbauer, T., Kessler, J., & Heiss, W. D. (1996). Cerebral representation of one’s own past: neural networks involved in autobiographical memory. The Journal of Neuroscience, 16(13), 4275-4282.
Fleck, J.I. & Weisberg, R. W. (2004). The use of verbal protocols as data: An analysis of insight in the candle problem. Memory & Cognition, 32, 990-1006.
Fodor, E. M. (1999). Subclinical inclination toward manic-depression and creative performance on the Remote Associates Test. Personality and Individual Differences, 27, 1273-1283.
Friedman, R. S., Fishbach, A., Foster, J. & Werth, L. (2003). Attentional Priming Effects on Creativity. Creativity Research Journal, 15, 277-286.
Gianotti, R. R., Mohr, C., Pizzagalli, D., Lehmann, D. & Brugger, P. (2001). Associative processing and paranormal belief. Psychiatry and Clinical Neurosciences, 55, 595-603.
Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., Evans, A. C. (2009). Ageand gender-related differences in the cortical anatomical network. Journal Neuroscience 29, 15684-15693.
Gough, H. G. (1976). Studying creativity by means of word association tests. Journal of Applied Psychology, 61, 348-353.
Gruszka, A. & Necka, E. (2002). Priming and Acceptance of Close and Remote Associations by Creative and Less Creative People. Creativity Research Journal, 14(2), 193-205.
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.
He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y., & Evans, A. C. (2009a). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One, 4(4), e5226.
Heatherton, T. F. & Vohs, K. D. (2000). Interpersonal evaluations following threats to self: Role of self-esteem. Journal of Personality and Social Psychology, 78, 725-736.
Howard-Jones, P. A., Blakemore, S.-J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240-250.
Isen, A. M., Labroo, A. A., & Durlach, P. (2004). An influence of product and brand name on positive affect: Implicit and explicit measures. Motivation and Emotion, 28(1), 43-63.
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PLos One, 5(3), e9818.
Jung-Beeman M (2005): Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 512-518.
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J.L., Arambel-Liu, S., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97.
Kaufmann, D. (2003). What to measure? A new look at the concept of creativity. Scandinavian Journal of Educational Research, 47, 235-251.
Kleibeuker, S. W., Koolschijn, P. C., Jolles, D. D., De Dreu, C. K. & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 1-12.
Kline, R. B. (1998). Principles and practice of structural equation modeling. NY: Guilfords Press.
Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight. Journal of Experimental Psychology: Learning, Memory and Cognition, 25, 1534-1555.
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281-291.
Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., et al. (2006). The preparedmind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-90.
Leemans, A., & Jones D.K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61, 1336-1349.
Libby, W. L. (1970). Reaction time and remote association in talented male adolescents. Developmental Psychology, 3, 285-297.
Lubart, T. I. (1994). Creativity. In R. J. Sternberg (Ed.), Thinking and problem solving (pp.289-332). New York, NY: Academic Press.
Luo, J. & Knoblich, G. (2007). Studying insight problem solving with neuroscientiWc methods. Methods, 42, 77-86.
Marreiros, A. C., Kiebel, S. J. & Friston, K. J. (2008). Dynamic causal modelling for fMRI: A two-state model. NeuroImage, 39, 269-278.
Martindale, C. (1981). Cognition and consciousness. Homewood, IL: Dorsey.
Martindale, C. (1995). Creativity and connectionism. In S. M. Smith, T. B. Ward, & R. A. Finke (eds.), The creative cognition approach (pp. 249-268). Cambridge, MA: MIT Press.
Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 71-80.
Martindale, C., Hines, D., Mitchell, L. & Covello, E. (1984). EEG alpha asymmetry and creativity. Personality and Individual Differences, 5, 77-86.
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 44, 220-232.
Mednick, S. A., & Mednick, M. T. (1967). Examiner’s manual, Remote Associates Test. Boston, MA: Houghton Mifflin.
Middleton, F.A. & Strick, P. L. (2002). Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cerebral Cortex, 12, 926-935.
Milgram, R. M. & Rabkin, L. (1980). Developmental test of Mednick’s associative hierarchies of original thinking. Developmental Psychology, 16, 157-158.
Ohlsson, S. (1984). Restructuring revisited: A summary and critique of the gestalt theory of problem solving. Scandinavian Journal of Psychology, 25, 67-78.
Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. In M. Keane, & K. Gilhooly (Eds.), Advances in the psychology of thinking (pp. 1–44). London, UK: Harvester-Wheatsheaf.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Perkins, D. (2000). The art and logic of breakthrough thinking. Norton & Company.
Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Lawrence Erlbaum Associations.
Prabhakaran, V., Narayanan, K., Zhao, Z., Gabrieli, J.D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85–90.
Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., Wu, Z., Zhang, Q. (2010). Neural correlates of the "Aha" experiences: evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397-403.
Raichle. M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M. K., Pardo, J. V., Fox, P. T., & Petersen, S. E. (1994). Practicerelated changes in human functional anatomy during non-motor learning. Cerebral Cortex, 4, 8-26.
Razumnikova, O. M., (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73, 96-102
Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappa, 42, 305-310.
Ryman, S., van den Heuvel, M., Yeo, R., Vakhtin, A., Carrasco, J., Owens, E., Wertz, C., Jung R. E. (2013). Complex networks in creative cognition. 2013 Annual Conference of Society for Social Neuroscience. Carton, China.
Scheffers, M.K., Coles, M.G.H., Bernstein, P., Gehring, W.J., Donchin, E. (1996). Event-related brain potentials and error-related processing: an analysis of incorrect responses to go and no-go stimuli. Psychophysiology, 33, 42-53.
Schooler, J.W.,&Melcher, J. (1995). The ineffability of insight. In S. M. Smith, T. B.Ward & R. A. Finke (Eds.). The creative cognition approach (pp. 249-268). Cambridge, MA: The MIT Press. Terai, Miwa, & Asami, 2011
Schulte, T., Sullivan, E.V., Muller-Oehring, E.M., Adalsteinsson, E., Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex, 15, 1384-1392.
Scott, G. I. & Gerard J. P. (1988). Adaption-Innovation And The Torrance Tests Of Creative Thinking: The Level-Style Issue Revisited. Psychological Reports, 63, 659-670.
Seger, C. A., Desmond, G. H., Glover, J. D. E., & Gabrieli. (2000). Functional magnetic resonance imaging evidence for righthemisphere involvement in unusual semantic relationships. Neuropsychology, 14, 361–369.
Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human Brain Mapping, 34(5), 1088-1101.
Simonton, D. K. (2000). Creativity: Cognitive, developmental, personal, and social aspects. American Psychologist, 55, 151-158.
Smith, S. M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1), 208-19.
Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418-425.
Sporns O, Tononi G, Ko¨tter R (2005). The human connectome: a structural description of the human brain. PLOS Computational Biology, 1, e42.
Sternberg, R. J. & Lubart, T. I. (1999). The concept of creativity: Prospect and Paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp.3- 15). Cambridge Press.
Stoeckel, C., Gough, P. M., Watkins, K. E., Devlin, J. T. (2009). Supramarginal gyrus involvement in visual word recognition. Cortex, 45, 1091-1096.
Storm, B. C., Angello, G., & Bjork, E. L. (2011). Thinking can cause forgetting: Memory dynamics in creative problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 1287-1293.
Subramaniam K, Kounios J, Parrish TB, Jung-Beeman M. 2009. A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21, 415-432.
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sassa, Y.., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22, 2921-2929.
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., Kawashima, R. (2010). White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage, 51, 11-18.
Tian, F., Tu, S., Qiu, J., Lv, J.Y., Wei, D.T., Su, Y.H., Zhang, Q.L. (2011). Neural correlates of mental preparation for successful insight problem solving. Behavioural Brain Research, 216, 626-630.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-289.
van den Heuvel, M. P., Stam, C. J., Boersma, M., & Hulshoff Pol, H. E. (2008). Smallworld and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 43, 528-539.
van den Heuvel, M.P., Mandl, R. C. W., Kahn, R.S., Hulshoff, Pol. HE, Y. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127-3141.
Vohs, K. D. & Heatherton, T. F. (2001). Self-esteem and threats to self: Implications for self-construals and interpersonal perceptions. Journal of Personality and Social Psychology, 81, 1103-1118.
Wakefield, J. F. (1992). Creative thinking: Problem Solving Skills and the Art Orientation.Norwood, NJ: Ablex.
Wang R., Benner T., Sorensen A. G., Wedeen V. J. (2007). Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl Soc. Mag. Reson. Med, 15, 3720.
Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapping, 30, 1511-1523.
Ward, J., Thompson-Lake, D., Ely, R., & Kaminski, F. (2008). Synaesthesia, creativity and art: What is the link? British Journal of Psychology, 99, 127-141.
Ward, W. C. (1969). Creativity and environmental cues in nursery school children. Developmental Psychology, 1(5), 543-547.
Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442.
Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92-102.
Weinstein, S. & Graves, R. E. (2001). Creativity, schizotypy, and laterality. Cognitive Neuropsychiatry, 6, 131-46.
Weinstein, S. & Graves, R. E. (2002). Are creativity and schizotypy products of a right hemisphere bias? Brain and Cognition, 49, 138-51.
Weisberg, R. W. (1995).Prolegomena to theories of insight in problem solving: a taxonomy of problems. In R. J. Sternberg, & J. E. Davidson (Eds.), The nature of insight (pp. 157-196). Boston, MA: MIT Press.
Woodward, T. S., Meier, B., Cairo, T. A., Ngan, E. T. C. (2006). Temporo-prefrontal coordination increases when semantic associations are strongly encoded. Neuropsychologia, 44, 2308-2314.
Worthen B. R. & Clark, P. M. (1972). Toward an Improved Measure of Remote Associational Ability. Journal of Educational Measurement, 8(2), 113-123.
Yomogida, Y., Sugiura, M., Watanabe, J., Akitsuki, Y., Sassa, Y., Sato, T., Matsue, Y., Kawashima, R., 2004. Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cerebral Cortex, 14, 1376-1383.
Yoruk, S. & Runco, M. A. (2014). The Neuroscience of Divergent Thinking. Activitas Nervosa Superior, 56, 1-16.
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50, 970-983.
Zhao, Q., Zhou, Z., Xu H., Chen, S., Xu, F., Fan, W., Han, L. (2013). Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese ‘chengyu’ riddles. PLoS One, 8, e59351.
Zhao, Q., Zhou, Z., Xu, H., Fan, W., Han, L. (2014). Neural pathway in the right hemisphere underlies verbal insight problem solving. Neuroscience, 3(256), 334-341.
Zhong, C.-B., Dijksterhuis, A., & Galinsky, A. D. (2008). The merits of unconscious thought in creativity. Psychological Science, 19(9), 912-918.