簡易檢索 / 詳目顯示

研究生: 林廷恩
Lin, Ting-En
論文名稱: 永磁同步線性馬達應用於X-Y定位平臺之高精密伺服控制器設計
High Precision Servo Controller Design in the X-Y Positioning Platform for Permanent- Magnet Linear Synchronous Motors
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 重複適應性互補式滑動控制線性馬達定位平台雙軸追跡
英文關鍵詞: Repetitive adaptive complementary sliding mode control, Linear motor positioning platform, Biaxial tracking
DOI URL: https://doi.org/10.6345/NTNU202202357
論文種類: 學術論文
相關次數: 點閱:101下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了重複適應性互補式滑動模式控制(RACSMC)應用於X-Y軸伺服線性馬達定位平台,以開發一套高精密運動之雙軸控制平台。首先我們先針對單軸的線性馬達系統模型建立,然後進行控制器設計,在本研究中RACSMC將主要運用適應性互補式滑動模式控制(ACSMC)來進行主要的控制動作,其主要特性在於有兩個滑動面的設計,而滑動面的狀態收斂條件是沿著兩滑動面的交線移動到最終收斂位置,而在動態響應部分比起一般傳統的滑動模式控制(SMC),有更好的誤差收斂效果,接著加入適應控制讓不確定性的參數估測不必全部都藉由SMC的強健控制切換函數項進行抑制,進而減少切跳現象(chattering),最後再加入重複控制原理,讓系統在週期性的精密運動的時候,可以抑制週期性的誤差,反覆學習的一種概念,使系統的穩態誤差在經由反覆的學習再更加的降低,進而提升此系統的精確度。
      在本論文中將會建立出一個線性馬達的雙軸定位平台數學模型,首先會把使馬達驅動的三相電流轉換為d-q軸控制電流,接著將此線性馬達推力方程式與機械模型整合後推導出兩軸的定位平台運動方程式,而系統的運動方程式將會考慮不確定性的問題,因此將會藉由此運動方程式,進行控制器的推導來設計適合此定位平台之控制器。在實驗中本研究將會對兩軸個別的做控制,以了解論文中設計的SMC及RACSMC對於此控制平台的性能差異,藉由定位以及追跡的實驗結果,可以證明本論文提出的RACSMC可以在此控制平台中有降低切跳現象,以及增加誤差收斂的效果,最後將使用RACSMC對雙軸做圓追跡、螺紋和葉子軌跡來呈現控制器的效能。

    In this paper, a repetitive adaptive complementary sliding mode control (RACSMC) is proposed for the X-Y-axis servo linear motor positioning platform develop the high precision motion double-axis platform. First, it focus on the developing of the single-axis linear motor system model. Then it will program the design of the controller. In this study, RACSMC will mainly use adaptive complementary sliding mode control (ACSMC) to carry out the main control action. The main feature is the design of two sliding surfaces. Its state of convergence is to move along the intersection of the two sliding surfaces to the final convergence position. The error convergence effect in the part of dynamic response is better than the traditional sliding mode control (SMC). This study add the adaptive control so that the parameter estimation of the uncertainty does not have to be all by the SMC robust control switching function to suppress in addition to reduce the chattering. At last, combining the principle of repeated control to inhibit the cyclical error and repeat learning a concept in the system in the periodic. Then steady-state error of the system will reduce through the repeated learning, and moreover enhance the accuracy of the system.It will derive a dual axis positioning platform mathematical model of the linear motor in the paper. It will convert the three-phase current which drives the motor into the dq-axis control current. This study can derive the motion equations of the two-axis positioning platform by integrating the linear motor thrust equation and the mechanical model. However, the system motion equations will take into account the problem of the uncertainty, so the motion equation will be used to derive the controller to design the controller for this positioning platform. In the experiment, this study will respectively control two-axes to learn the difference of performance between our designed SMC and RACSMC in this control platform. By the experimental results of positioning and tracking, it can prove that the RACSMC which our proposed will produce reduction in the phenomenon of switching and increase the effect of error convergence in this control platform. Finally, this study will present the performance of the controller by using the RACSMC on the dual axis to make circle tracking.

    目錄 摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 2 1.3 研究動機與目的 9 1.4 本論文之貢獻 9 1.5 論文架構 10 第二章 理論基礎 11 2.1線性馬達之數學模型 11 2.1.1線性馬達電壓方程式 11 2.1.2 線性馬達之推力方程式 13 2.2 線性馬達的外部干擾 15 2.2.1 摩擦力 15 2.2.1 邊緣效應 16 2.2.2 Armstrong Helouvry模型 16 2.2.3 LuGre摩擦力模型 17 2.3 控制理論之介紹 18 2.3.1 Lyapunov理論 18 2.3.2 滑動模式控制(sliding mode control) 19 2.3.3 重複控制(repetitivee Control)[14] 22 2.3.4 適應控制(Adaptive Control)[9] 22 第三章 控制器設計 24 3.1線性馬達模型建立 24 3.1線性馬達定位平台系統鑑別方法 26 3.2 控制器設計 26 3.2.1 傳統滑動模式控制 27 3.2.2 適應性互補式滑動模式控制結合重複控制原理 29 第四章 實驗設備 34 4.1 馬達伺服控制迴路系統架構 34 4.2 高精密度四軸龍門式線性馬達定位平台 35 4.3永磁同步伺服線性馬達 35 4.4驅動器 37 4.5光學尺 38 4.6 DAQ資料擷取卡 39 4-7線性馬達定位平台之控制器 40 第五章 實驗結果 41 5.1 單軸控制與傳統控制器性能比較分析 41 5.2 雙軸定位平台線性馬達之追蹤控制與加入負載強健性測試 47 5.2.1 X軸線性馬達之追蹤控制與加入負載之強健性測試 47 5.2.2 Y軸線性馬達之追蹤控制與加入負載之強健性測試 57 5.2.3 X-Y雙軸同動控制 67 5.2.3.a 圓軌跡雙軸同動追蹤實驗 67 5.2.3.b 螺紋軌跡雙軸同動追蹤實驗 71 5.2.3.c 四片葉子軌跡雙軸同動追蹤實驗 74 5.2.3.d NTNU軌跡雙軸同動追蹤實驗 77 第六章 結論及未來展望 82 參考文獻 83

    [1] Chih-Jer Lin, Her-Terng Yau, and Yun-Cheng Tian, “Identification and Compensation of Nonlinear Friction Characteristics and Precision Control for a Linear Motor Stage,” IEEE/ASME TRANSACTIONS ON MECHATRONICS, Vol. 149, no. 3, pp. 1385 - 1396, May 2013
    [2] M. John Prabu, P. Poongodi, and K. Premkumar, “Fuzzy supervised online coactive neuro-fuzzy inference system-based rotor position control of brushless DC motor,” IET Power Electronics, Vol. 9, no. 11, pp. 2229-2239, Sept 2016.
    [3] P.-H. Shen, and F.-J. Lin, “Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system,” IEE Proceedings - Electric Power Applications, Vol. 152, no. 5, pp. 1321-1342, Sept 2005.
    [4] D. Fulwani, B. Bandyopadhyay, and L. Fridman, “Non-linear sliding surface: towards high performance robust control,” IET Control Theory & Applications, Vol. 6, no. 2, pp. 235-242, January 2012.
    [5] Jie Zhang, Min Wu, Shi-Huan Chen, Jin-Hua She, and Yong He, “Design of a modified repetitive control system using state feedback based on two-dimensional hybrid model,” IEEE Conference Decision and Control, pp. 667-672, Dec 2009.
    [6] Jim-Wei Wu, Yu-Ting Lo, Wei-Chih Liu, and Li-Chen Fu, “Lissajous scan trajectory with internal model principle controller for fast AFM image scanning,” Society of Instrument and Control Engineers (SICE), pp. 469-474, July 2015.
    [7] Kwanghyun Cho, Jonghwa Kim, Seibum Ben Choi, and Sehoon Oh, “A High-Precision Motion Control Based on a Periodic Adaptive Disturbance Observer in a PMLSM,” IEEE/ASME Transactions on Mechatronics, Vol. 20, no. 5, pp. 2158-2171, Oct 2015.
    [8] Faa-Jeng Lin, Jonq-Chin Hwang, Po-Huan Chou, and Ying-Chih Hung, “FPGA-Based Intelligent-Complementary Sliding-Mode Control for PMLSM Servo-Drive System,” IEEE Transactions on Power Electronics, Vol. 25, no. 10, pp. 2573-2587, Oct 2010.
    [9] 林玠虢,高精密度雙軸鐵心式永磁同步伺服線性馬達定位平台之控制器設計與性能分析,國立台灣師範大學機電工程學系,2015年6月。
    [10] 蘇于淵,龍門平台之定位控制,國立台灣科技大學電機工程學系,2008年7月。
    [11] Z. Jamaludin, H. V. Brussel, and J. Swevers, “Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 10, pp.3848-3853, October 2009.
    [12] J. Rodellar, C. Iurian, F. Ikhouaneand, and R. Griñó, “Identification of a System with Dry Friction,”, 2005.
    [13] M. Gäfvert, “Comparisons of Two Dynamic Friction Models,” Proceedings of the 1997 IEEE International Conference on Control Applications, pp. 386-391, 1997.
    [14] S. Hara, Y. Yamamoto, T. Omata, M. Nakano, ” Repetitive control system: a new type servo system for periodic exogenous signals,” IEEE Transactions on Automatic Control, Vol. 33, No. 7, pp. 659-668, July 1988
    [15] 趙清風編譯,「控制工程初階使用MATLAB Simulink」,全華科技圖書股份有限公司,民國90年12月。
    [16] 曾仲熙編著,「控制器設計與模擬範例」,東華書局,民國99年8月。
    [17] HIWIN上銀科技「線性馬達系統-技術手冊」
    [18] 簡万菘「精密機械概論-光學尺篇」。
    [19] Copley Controls, “Xenus XTL User Guide”
    [20] C.-K. Lin, and M.-Y. Chen, “Adaptive Incremental Sliding Mode Controller for a Linear Permanent Magnet Iron Core Synchronous Motor and Chattering Reduction,” SCIS&ISIS 2014, pp. 1059-1063, December 2014.
    [21] Elmo Motion Control, “SimpleIQLine Cornet Digital Servo Drive Installation Guide”
    [22] F. Cupertino, D. Naso, E. Mininno, and B. Turchiano, “Sliding-Mode Control With Double Boundary Layer for Robust Compensation of Payload Mass and Friction in Linear Motors,” IEEE Transactions on Industry Applications, Vol. 45, no. 5, pp. 1688-1696, October 2009.

    下載圖示
    QR CODE