簡易檢索 / 詳目顯示

研究生: 楊依婷
Yang, Yi-Ting
論文名稱: 書目探勘公共圖書館帕列托法則
Bibliomining the Pareto Principle of Public Libraries
指導教授: 謝建成
Shieh, Jiann-Cherng
學位類別: 博士
Doctor
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 書目探勘帕列托法則公共圖書館目標行銷資料倉儲
英文關鍵詞: Bibliomining, Pareto Principle, Public Library, Target Marketing, Data Warehouse
DOI URL: http://doi.org/10.6345/NTNU202000692
論文種類: 學術論文
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕列托法則為管理學上的熱門議題,指關鍵少數與無用多數的不平衡現象,80/20法則是帕列托法則的延伸,主張小部分的原因、投入或努力,可以產生大部分的結果、產出或酬勞。公共圖書館的流通資料,是讀者實際使用圖書館館藏的紀錄,本研究探討圖書館情境中的80/20法則,以讀者的觀點為基礎,分析公共圖書館近2年的流通資料,研究結果發現24.7%的讀者佔有75.3%的借閱量,符合帕列托法則的現象,有關鍵少數讀者貢獻了大部分的借閱。
    本研究以資料探勘技術分析關鍵少數讀者的特性、可用多館藏特性,以及兩者的關聯,並應用於目標行銷中,試圖達成公共圖書館的目標行銷。目標行銷三步驟為市場區隔、市場選擇與市場定位,本研究以帕列托法則的觀點,找出圖書館有少部分的讀者,因佔有大部分的借閱,成為關鍵少數讀者,當作目標行銷中的市場區隔;以分群分析了解關鍵少數讀者的特性,當作目標行銷中的市場選擇;藉由借閱資料的關聯規則分析,得知群集中讀者借閱館藏的關聯,以擬定推銷館藏的策略,當作市場定位。本研究結果有助於公共圖書館個人化服務推廣,以及行銷推展及政策制定,可成為公共圖書館館藏推薦時的參考,幫助公共圖書館在管理、行銷與館藏發展議題上更有效率。

    The Pareto Principle, also known as the 80/20 rule is currently an important and popular management rule applied to marketing and customer relationship management. The rule indicates that the vital few causes inputs or efforts bringing the most results, outputs, or rewards. Analyzing circulation data to understand the usage status of library collections can help libraries comprehend their patrons’ behavior. This study aims to analyze the circulation data generated by a public library in Taiwan to gauge if the Pareto Principle manifested in this context. Findings show that when the accumulative percentage of patrons is 24.7 percent, the accumulative percentage of borrowed books is 75.3 percent, approximating to the 80/20 rule. The vital few patrons have borrowed the majority of the collections.
    Using bibliomining analysis, this study further identifies vital few patrons and their characteristics, book-borrowed distributions, and their relationships, and applies target marketing to public libraries. Target marketing is a kind of customer marketing, mainly using analysis of customer characteristics to segment customers, in order to achieve specific commodity marketing for the purpose. The three main steps of target marketing are market segmentation, market targeting, and market positioning. The study segments public library patrons by Pareto Principle, uses the cluster analysis of data mining techniques to select clusters to target and focus on, and applies the association rule of data mining techniques to position the patrons. The findings can help libraries identify vital patrons and major collections, and improve the efficiency of their management, marketing and collection development in the future.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 2 第三節 研究範圍限制 3 第四節 名詞解釋 4 第二章 文獻探討 5 第一節 資料倉儲與資料探勘 5 第二節 書目探勘 11 第三節 帕列托法則與圖書館應用 16 第四節 圖書館行銷 19 第三章 研究方法 24 第一節 研究架構與系統架構 24 第二節 研究對象 25 第三節 資料倉儲設計與實作 26 第四節 帕列托法則 33 第五節 研究分析工具 35 第四章 研究結果 36 第一節 關鍵少數讀者 36 第二節 可用多館藏 42 第三節 關鍵少數讀者與可用多館藏 53 第五章 結論與建議 62 第一節 研究結論 62 第二節 建議與未來研究 63 參考文獻 65 附錄 71

    Al-Daihani, S. M., Abrahams, A. (2016). A text mining analysis of academic libraries' tweets. The Journal of Academic Librarianship, 42(2), 135-143.
    Applbaum, K. (2004). The marketing era: From professional practice to global provisioning. Routledge.
    Banduka, N., Mačužić, I., Stojkić, Ž., Bošnjak, I., & Peronja, I. (2016). Using 80/20 Principle to Improve Decision Making at PFMEA. Annals of DAAAM & Proceedings, 27.
    Burrell, Q. L. (1985). The 80/20 rule: Library lore or statistical law? Journal of Documentation, 41(1), 24-39.
    Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., Piatetsky-Shapiro, G., & Wang, W. (2006). Data mining curriculum: A proposal (Version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee, 140.
    Connaway, L. S., & Faniel, I. M. (2014). Reordering Ranganathan: Shifting User Behaviors, Shifting Priorities. OCLC Online Computer Library Center, Inc. 6565 Kilgour Place, Dublin, OH 43017.
    Cram, J. K. (1994). Marketing for Non-School Libraries: A Guide to an Essential Management Activity. Department of Education: Queensland.
    Goodall, D., & Pattern, D. (2011). Academic library non/low use and undergraduate student achievement: a preliminary report of research in progress. Library Management, 32(3), 159-170.
    Gupta, D. K., Koontz, C., & Massisimo, A. (Eds.). (2010). Marketing library and information services (pp. 3553-3560). Taylor & Francis.
    Han, J., Kamber, M. and Pei, J. (2011). Data Mining: Concepts and Techniques. Waltham: Morgan Kaufmann.
    Hardesty, L. (1981). Use of Library Materials at a Small Liberal Arts College. Library Research, 3(3), 261-82.
    IFLA (1998). Glossary of Marketing Definitions. http://archive.ifla.org/VII/s34/pubs/ glossary.htm.
    Hájek, P., & Stejskal, J. (2014). Library user behavior analysis - Use in economics and management. WSEAS Transactions on Business and Economics, 11, 107–116.
    Hájek, P., & Stejskal, J. (2017). Library usage mining in the context of alternative costs: the case of the municipal library of Prague. Library Hi Tech 35(4), 565-583.
    Inmon, W. H. (2008). Building the Data Warehouse, 3rd ed., Wiley
    Joo, S., Lu, K. and Lee, T. (2020), Analysis of content topics, user engagement and library factors in public library social media based on text mining, Online Information Review, 44(1), 258-277
    Kelly, M. (2015). An evidence based methodology to facilitate public library non-fiction collection development. Evidence Based Library and Information Practice, 10(4), 40-61.
    Kelly, M. (2019). A bibliometric analysis of Australia's public library adult non-fiction collections. In Proceedings of RAILS - Research Applications Information and Library Studies, 2018, Faculty of Information Technology, Monash University, 28-30 November 2018. Information Research, 24(3), paper rails1807.
    Khan, A. M., & Ramzan, A. (2018). Relationship between Pareto Principle and Employees' Compensation: How It Fascinates, Retains and Rewards Executives? Bulletin of Education and Research, 40(2), 147-161.
    Kim, B. J., Singh, V., Winer, R. S. (2017). The Pareto rule for frequently purchased packaged goods: an empirical generalization. Marketing Letters 28(4), 491-507.
    Kimball, R. & Ross, M. (2013). The data warehouse toolkit: the definitive guide to dimensional modeling (3rd ed.). Wiley.
    Koch, R. (2011). The 80/20 Principle: The Secret of Achieving More with Less. New York: Currency Doubleday.
    Kotler, P. (1996). Marketing Management: Analysis, Planning, Implementation, and Control (9th ed.). New York: Prentice-Hall.
    Kotler P. & Armstrong G. (2017). Principles of Marketing (17th ed.). Pearson.
    Mesbahi, M. R., Rahmani, A. M., & Hosseinzadeh, M. (2017). Highly reliable architecture using the 80/20 rule in cloud computing datacenters. Future Generation Computer Systems, 77, 77-86.
    Nash, J. L. (2016). Richard Trueswell's Contribution to Collection Evaluation and Management: A Review. Evidence Based Library and Information Practice, 11(3), 118-124.
    Nicholson, S. (2003). The bibliomining process: Data warehousing and data mining for library decision making. Information Technology and Libraries, 22(4), 146-151.
    Nicholson, S. (2006). The basis for bibliomining: Frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services. Information processing & management, 42(3), 785-804.
    Nisonger, T. E. (2008). The “80/20 rule” and core journals. The Serials Librarian, 55(1-2), 62-84.
    Papavlasopoulos, S., & Poulos, M. (2012). Neural network design and evaluation for classifying library indicators using personal opinion of expert. Library Management, 33(4/5), 261–271.
    Piatetsky-Shapiro, G. (2014). What main methodology are you using for your analytics, data mining, or data science projects. Online verfügbar unter http://www. kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology. html.
    Quester, P. G., McGuiggan, R. L., Perreault, W. D., & McCarthy, E. J. (2004). Marketing: Creating and Delivering Value (4th ed.). Sydney, N.S.W: McGraw Hill.
    Renaud, J., Britton, S., Wang, D., & Ogihara, M. (2015). Mining library and university data to understand library use patterns. The Electronic Library, 33(3), 355-372.
    Sewell, Robin R. (2013). Who is following us? Data mining a library's Twitter followers. Library Hi Tech, 31(1), 160–170.
    Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4), 13-22.
    Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499-510.
    Singson, M. & Hangsing, P. (2013). Reaffirming 80/20 rule in Indian Academic Consortia, Paper presented at the International Conference on Digital Libraries (ICDL) 2013: 464-474.
    Singson, M., & Hangsing, P. (2015). Implication of 80/20 rule in electronic journal usage of UGC-infonet consortia. The Journal of Academic Librarianship, 41(2), 207-219.
    Siriprasoetsin, P., Tuamsuk, K., & Vongprasert, C. (2011). Factors affecting customer relationship management practices in Thai academic libraries. The International Information and Library Review, 43(4), 221–229.
    Trueswell, R. L. (1969). Some behavioral patterns of library users: The 80/20 rule. Wilson Libr Bull, 43(5), 458-461.
    Walters, W.H. (2007). A regression-based approach to library fund allocation. Library Resources & Technical Services, 51(4), 263–278.
    Weingand, D. E. (1999). Marketing/Planning Library and Information Services (2nd ed.). Libraries Unlimited.
    Yamashita, K., McIntosh, S., Kamei, Y., Hassan, A. E., & Ubayashi, N. (2015, August). Revisiting the applicability of the pareto principle to core development teams in open source software projects. In Proceedings of the 14th International Workshop on Principles of Software Evolution (pp. 46-55). ACM.
    Yang, S. -T. (2012). An active recommendation approach to improve book-acquisition process. International Journal of Electronic Business Management, 10(2), 163–173.
    尹相志(2006)。Microsoft SQL server 2005資料採礦聖經。臺北市:學貫行銷。
    邱子恒(1999)。行銷概念在圖書館及其資訊服務之應用:文獻分析。大學圖書館,3(4),120-130。
    吳東龍(2016),發掘圖書館讀者個人化書籍推薦:關聯規則之應用(未出版之碩士論文)。南台科技大學資訊管理學系,台南市。
    呂家賢(2005)。運用資料探勘技術於大學圖書館圖書資源推廣利用之研究(未出版之碩士論文)。銘傳大學管理研究所,台北市。
    林佳葦、施玲玲(2015)。公共圖書館數位行銷術。公共圖書館,1,6-1 – 6-19。
    林誠、劉福堂(2005)。資料探勘在寬頻網路客戶目標行銷之應用研究。電子商務學報,7(2),121-138。
    姜義臺(2015)。運用社群媒體行銷圖書館服務之淺析。臺北市立圖書館館訊,33(2),55-67。
    梁志偉(2008)。結合資料探勘和模糊層級分析法於目標行銷之決策支援系統(未出版之碩士論文)。華梵大學資訊管理學系,新北市。
    郭俊桔、張瑞珊、張育蓉(2013)。導入矩陣分群之視覺化圖書推薦系統,教育資料與圖書館學,51(1),4-35。
    張靖翊(2015)。臺中市公共圖書館新書陳列與展示之研究(未出版之碩士論文)。國立中興大學圖書資訊學研究所,台中市。
    陳隆輝、黃琡珺(2015)。公共圖書館推廣服務行銷策略之應用-以閱讀活動為例。臺北市立圖書館館訊,33(2),17-34。
    陳垂呈、陳幸暉(2011)。建置圖書館書籍推薦系統:資料探勘之應用。工程科技與教育學刊,8(3),469-478。
    陳蓉慧(2015)。基於網頁點擊之序列探勘的交易推薦機制(未出版之碩士論文)。朝陽科技大學資訊管理系,台中市。
    張蘭蘭、劉朔、謝佳斌與李揚(2008)。基於資料挖掘的信用卡客戶細分與目標行銷研究。數據分析,3(5),125-142。
    楊依婷、謝建成(2017)。圖書館資料倉儲應用模式之研究以客製化報表為例。圖書資訊學研究,12(1),111-137。
    劉莉萱(2007)。台灣鄉鎮市區圖書館行銷現況與館員行銷態度調查(未出版之碩士論文)。輔仁大學圖書資訊學系,台北市。
    劉玉芝(2008)。以讀者需求探討交通大學圖書館之推廣策略(未出版之碩士論文)。國立交通大學管理學院碩士在職專班科技管理組,新竹市。
    謝建成(2009)。書目探勘。台北市:文華圖書資訊。

    無法下載圖示 本全文未授權公開
    QR CODE